СКОРОСТЬ ВИХРЕВОЙ ДИССИПАЦИИ КАК МЕРА ИНТЕНСИВНОСТИ ТУРБУЛЕНТНОСТИ И ВОЗМОЖНОСТИ ЕЕ ОПЕРАТИВНОГО ПРОГНОЗИРОВАНИЯ ДЛЯ МЕТЕООБЕСПЕЧЕНИЯ АВИАЦИИ

А.Р. Иванова, Н.П. Шакина, Н.И. Комасько, Е.Н. Скриптунова, А.А. Завьялова, У.О. Соколова

ФГБУ «Гидрометцентр России»

Турбулентность как причина авиационных происшествий

- По данным Федерального авиационного агентства США болтанка самолетов как результат действия турбулентности является основной причиной травм бортпроводников и пассажиров воздушного судна в результате происшествий без смертельного исхода. Ежегодно 58 человек в США получают травмы в случаях болтанки, будучи непристегнутыми.
- По данным Управления гражданской авиации Китая, в период с 2017 по 2021 год произошло более 1700 инцидентов, связанных с турбулентностью
- **PIREP** сводки содержат информацию о турбулентности типе (классифицируется ПО источнику возникновения), уровне интенсивности (слабая, умеренная, экстремальная) сильная, (случайная. продолжительности прерывистая, непрерывная). Все эти характеристики определялись пилотом субъективно и были основаны реакции ВС и реакции находящихся кабины самолета, что позволяло оценить реальную картину возмущенности атмосферы вокруг ВС,

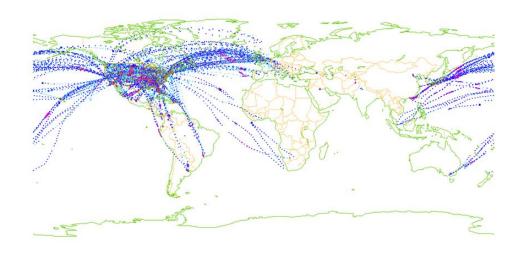
Степень воздействия на воздушное судно (интенсивность турбулентности):

- Умеренная небольшие изменения в высоте воздушного судна. Контроль над судном сохраняется все время. Изменения воздушной скорости незначительны.
- **Сильная** резкие изменения в пространственном положении и/или высоте . На короткое время может теряться контроль над ВС. Велики изменения воздушной скорости.
- Экстремальная эффекты более выражены, чем для сильной турбулентности.

булентность, динамика атмосферы и климата. Москва, 19-21 ноября 2024 г.

- **1941 г.** А.Н. Колмогоров «Локальная структура турбулентности в несжимаемой вязкой жидкости при очень больших числах Рейнольдса», введено понятие интервала равновесия
- 1948 г. Теодор фон Карман разработал эмпирическую формулу, описывающую энергетический спектр линейки масштабов, включающей инерционный интервал
- 1964 г. Пол Маккриди, обсуждая возможность стандартизации интенсивности атмосферной турбулентности, воздействующей на BC вне зависимости от типа самолета, предложил использовать теорию Колмогорова для введения понятия коэффициента диссипации энергии, ϵ . Эта величина на инерционном интервале связывает статистическое количество вихрей с их размером. Энергетический спектр турбулентности в любом направлении будет пропорционален $\epsilon^{2/3}\lambda^{5/3}$ (λ длина волны), и обычно распространяется на турбулентные возмущения на масштабах от нескольких сантиметров до 200-300 м
- 1994 г. специалисты Национального центра по атмосферным исследованиям США, базируясь на теоретических положениях об инерционном интервале, предложили первый алгоритм определения в полете EDR *in situ*
- **2001 г.** Международной организацией гражданской авиации (ИКАО) был принят метод определения EDR *in situ* в качестве стандарта для автоматических сообщений о турбулентности коммерческими самолетами, а сама характеристика EDR утверждена как стандартный показатель атмосферной турбулентности
- **2024 г.** с 26 ноября после реформы ВСЗП согласно регламенту ИКАО турбулентность на эшелонах по маршрукуюнелаьопределяется реграмения EDR 19-21 ноября 2024 г.

Paul McCready, 1964


Fig. 1. Atmospheric turbulence power spectra and the wavelength ranges of importance for aircraft.

Методы определения EDR *in-situ*

Основаны на данных:

- об ускорении BC (акселерометрический)
- о скорости ВС и параметрах полета: углах скольжения, атаки, крена (TAMDAR, QAR)

EDR — кубический корень из скорости вихревой диссипации

Алгоритм NLR

$$\varepsilon^{\frac{1}{3}} = \frac{\hat{\sigma}_{\omega}}{\sqrt{1.05V_a^{\frac{2}{3}}(\omega_1^{-\frac{2}{3}} - \omega_2^{-\frac{2}{3}})}}$$

Va - воздушная скорость с фильтрацией нижних частот, σ_{ω} стандартное отклонение изменений вертикального ветра после полосовой фильтрации в окне ω_1 – ω_2

Алгоритм NCAR

$$\varepsilon^{\frac{1}{3}} = \sqrt{\frac{\gamma^2}{N} \sum_{i=1}^{N} \frac{S_{\omega}(f_i)}{S_{model}(f_i)}}$$

 γ^2 поправочный коэффициент, N — кол-во частот, S_{ω} — спектр мощности верт.скорости, Smodel — спектр эталонной модели

Градации интенсивности турбулентности:

- отсутствие: $EDR_{max} \le 0.10 \text{ м}^{2/3} \cdot \text{c}^{-1}$

- слабая: $0.10 \le EDR_{max} < 0.20 \text{ м}^{2/3} \cdot \text{c}^{-1};$

- умеренная: $0.20 \le EDR_{max} < 0.45 \text{ м}^{2/3} \cdot \text{c}^{-1};$

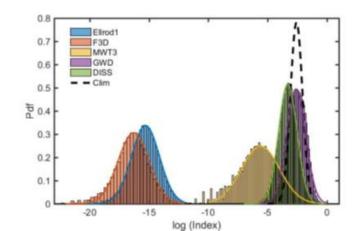
- сильная: $EDR_{max} \ge 0.45 \text{ м}^{2/3} \cdot \text{c}^{-1}$;

Климатология:

- Вся турбулентность (EDR ≥0,10 м^{2/3}·c²) 10%
- Сильная турбулентность –10-5%

Опасное влияние на ВС - обязательна к передаче информация об **умеренной (МОD)** и **сильной** (SEV) турбулентности

Турбулентность, динамика атмосферы и климата Москва, турбулентности


19-21 ноября 2024 г. (SEV) турбулентности

Прогнозирование EDR

- Турбулентность, не связанная с конвекцией (non-CIT)
- Краткосрочный прогноз
- Модель ЧПП
- Диагностики ТЯН и ГВ

Алгоритм IFS:

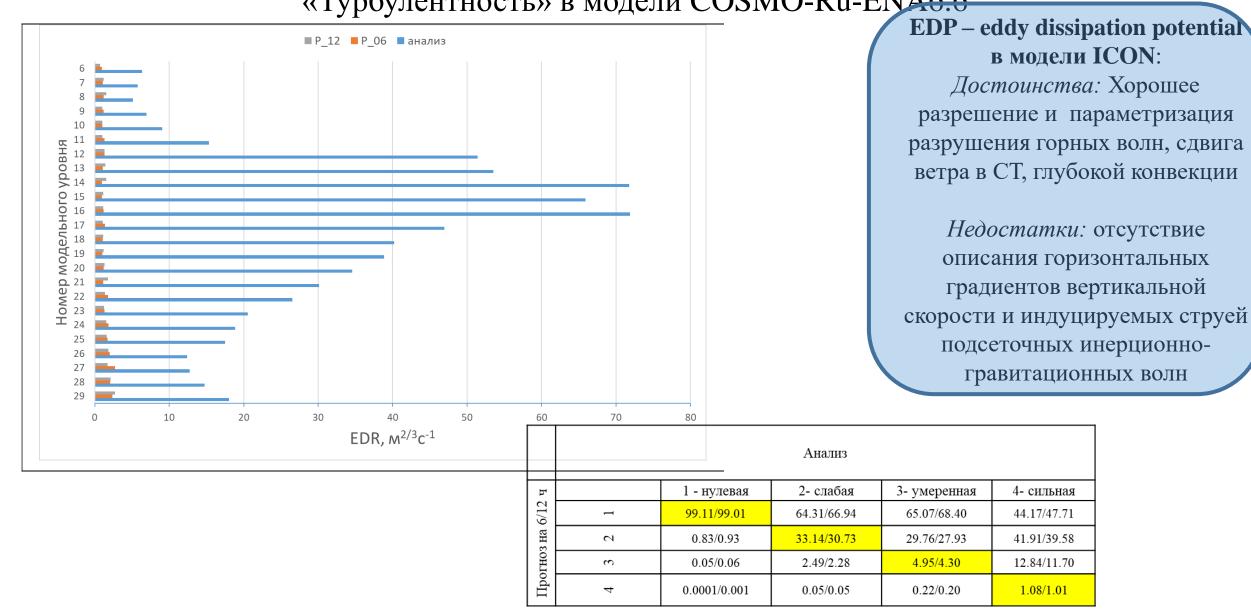
ТУРБ= 0.66·DISS+GWD, где индекс волнового напряжения, GWD связанный с подсеточным влиянием не орографических гравитационных волн, DISS — общая скорость турбулентной диссипации

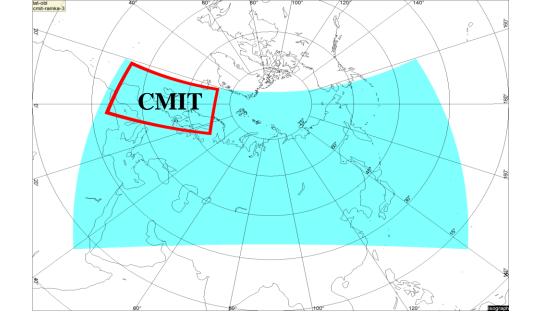
Алгоритм GTG:

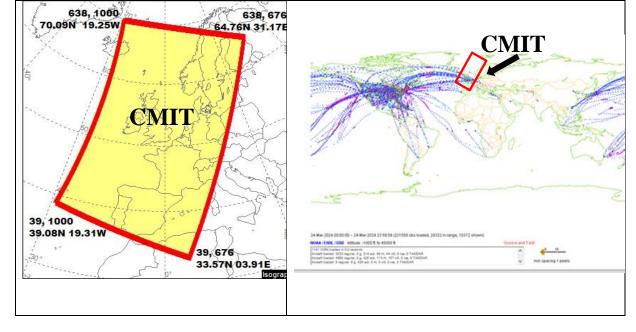
Ансамблевый прогноз с использованием 40 индексов САТ и их комбинаций и 14 характеристик МWT

• Турбулентность, индуцируемая конвекцией (CIT)






- Наукастинг
- Блендинг (ЧПП 1-2 ч + наблюдения)


AMDAR – Aircraft
Meteorological DAta Relay –
передача метеорологических
данных с самолета

EDR на модельных уровнях в начальных (голубой) и прогностических (оранжевый – на 6 ч, серый – на 12 ч) полях модели COSMO-RuENA6.6. Результат работы модуля «Турбулентность» в модели COSMO-Ru-ENA6.6

Голубое поле — область прогнозирования модели COSMO-Ru6ENA. Красной рамкой выделена область сбора возможной информации об EDR (регион CMIT).

AC#9757 CMH->BOS starting at 23-Sep-2010 11:12:40 with 51 obs ascent sounding starting at 23-Sep-2010 11:12:40 descent sounding ending at 23-Sep-2010 12:38:34

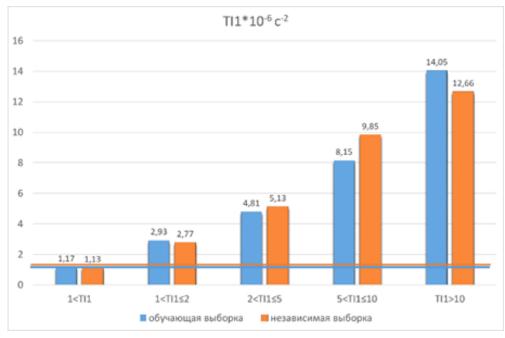
descent sounding ending at 25-5ep-2010 12.56.54								
S F HHMM	lat/lon	Alt	wd/ws	t / td	edr	ice		
4 2 1112 40.0	000/-82.8960	590	°/	17.5/17.50±1.9	/	0		
4 0 1113 39.9	980/-82.8690	1250	224°/012	21.0/21.00±0.3	/	0		
4 0 1113 39.9	980/-82.8620	1540	231°/013	21.7/21.70±0.3	0.45/0.65	0		
4 0 1113 39.9	980/-82.8540	1800	228°/012	21.7/21.10±0.3	0.45/0.95	0		
4 2 1113 39.9	980/-82.8440	2070	°/	$20.7/18.90 \pm 0.4$	0.65/0.95	0		
4 2 1113 39.9	980/-82.8310	2330	°/	20.2/17.90±0.6	0.35/0.95	0		
4 2 1113 39.9	980/-82.8180	2590	°/	$20.2/16.80\pm0.6$	0.65/0.95	0		
4 0 1114 39.9	960/-82.8030	2850	257°/023	20.7/14.90±0.7	0.95/0.95	0		
				21.0/14.50±0.7		0		
4 2 1114 39.9	940/-82.7750	3280	°/	20.5/16.20±0.6	0.35/0.95	Ђ урбулентност		

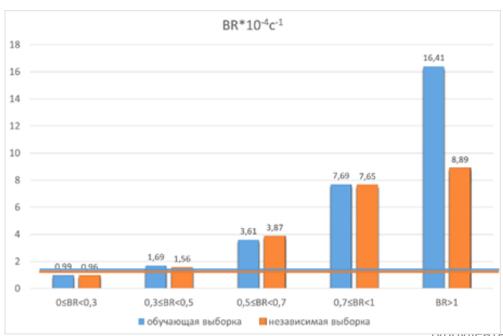
4 0 1114 39.9920/-82.7220 4330 271°/032 18.5/14.20±0.6 0.95/0.95 0

Количество собранных сводок EDR над регионом CMIT (март 2021-февраль 2024):

- Всего 519 767(100%)

- Нулевая 485 345 (93,4%)


- Слабая 29 729 (5,7%)


Умеренная 4 681 (0.2%)

Сильная 12 (0.002%)

улентность, динамика атмосферы и климата. Москва,

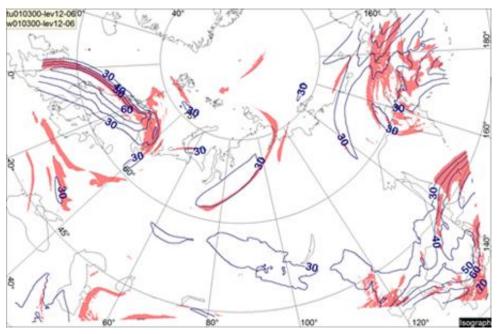
19-21 ноября 2024 г.

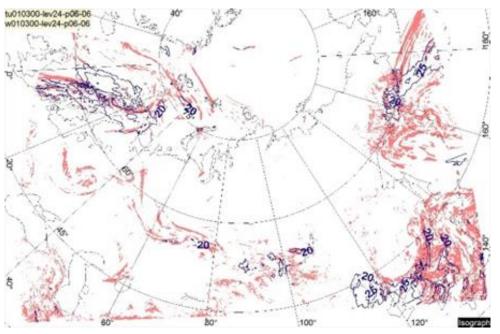
Анализ однопараметрических И распределений двухпараметрических ДЛЯ турбулентности, умеренной случаев подтвержденных значениями EDR

индекс Эллрода + индекс Брауна
$$(Br = \sqrt{(0.3\varsigma_a^2 + D_{sh}^2 + D_{st}^2)})$$

TII, 10-6 c-2			Всего			
<i>TIII</i> ,		01	12	≥2	Beero	
_	Число узлов	6570220	4175116	382104	11127440	
-1.0	Число сл. <i>EDR</i>	59455	53018	9514	121987	
0.0-1.0	Повт. сл. <i>EDR</i> , %	0.90	1.27	2.49	1.10	
_	Число узлов	55790	740261	717134	1513185	
1.0–5.0	Число сл. <i>EDR</i>	2072	23195	28499	53766	
1.0	Повт. сл. <i>EDR</i> , %	3.71	3.13	3.97	3.55	
	Число узлов	0	1336	120074	121410	
5	Число сл. <i>EDR</i>	0	237	12409	12646	
٨١	Повт. сл. <i>EDR</i> , %	0.00	17.74	10.33	10.42	
	Число узлов	6626010	4916713	1219312	12762035	
Всего	Число сл. <i>EDR</i>	61527	76450	50422	188399	
Bç	Повт. сл. <i>EDR</i> , %	0.93	1.55	4.14	1.48	

Индекс Эллрода $TI1 = D \left| \frac{\partial \vec{V}}{\partial z} \right|$ туроулентность, динамика атмосферы и климата. Москва,


19-21 ноября 2024 г.


$$D = D \left[\frac{\partial z}{\partial z} \right]$$

$$D = \sqrt{D_{sh}^2 + D_{st}^2} = \sqrt{\left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right)^2 + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right)^2}$$

Пример карт прогноза умеренной и сильной турбулентности (EDR \geq 0,2 м $^{2/3}\cdot$ с $^{-1}$) на эшелонах полета

FL290 FL100

Техническая комиссия ИКАО, A41-WP/235, июль 2022 г.

- Рекомендация по разработке прикладных стандартов в отношении турбулентности в полете.
- «...разработанная ИКАО система категорий турбулентности в полете не позволяет точно определить турбулентность для различных типов воздушных судов, что затрудняет принятие экипажем надлежащих мер реагирования»
- Индекс турбулентности будет получен в результате преобразования прогнозируемого значения EDR и значения, связанного с нагрузкой, EDR-G, по разрабатываемым в настоящее время формулам с учетом соответствующего типа воздушного судна

Спасибо за внимание!

