Oceanic Eddy-Induced Transport: Full-Tensor Approach

Michael Haigh, Luolin Sun and Pavel Berloff

Imperial College London, Department of Mathematics

Igor Kamenkovich and Yueyang Lu

University of Miami, RSMAS

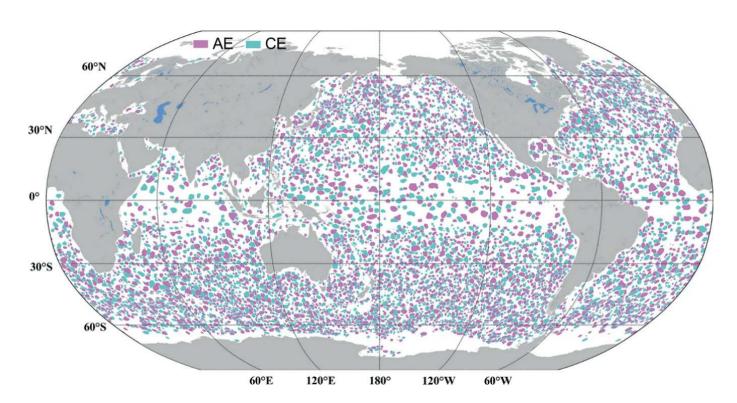
James McWilliams

UCLA

Results are published in a series of papers.

Mesoscale (Synoptic) Oceanic Eddies and their Diffusive Parameterization

Snapshot of the observed sea surface anomaly shows cyclonic and anticyclonic eddies all over the ocean



- Because eddies have important effects on the large-scale ocean circulation and climate dynamics, they have to be either *directly resolved*, which is computationally very expensive, or *parameterized*. Most parameterization approaches involve some *turbulent diffusion*.
- Turbulent diffusion is based on *flux-gradient relation* that replaces eddy flux (in large-scale dynamics for C) with large-scale gradient and involves *transport* (tensor) coefficient K:

$$\overline{\mathbf{u}'C'} = -\mathbf{K} \cdot \nabla \overline{C} \qquad \Longrightarrow \qquad \frac{\partial \overline{C}}{\partial t} + \overline{\mathbf{u}} \cdot \nabla \overline{C} = \nabla \cdot \left(\mathbf{K} \cdot \nabla \overline{C} \right),$$

where overbar and prime assume some scale decomposition: $C = \overline{C} + C'$, $\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}'$.

Statement of the Problem

- ullet Our novel approach was to diagnose space-time dependent $\mathbf{K}(t,\mathbf{x})$ from an eddy-resolving model and without imposing any constraints or assumptions.
- We employed double-gyre quasigeostrophic (layered) ocean model that represents wind-driven midlatitude circulation with vigorous eddy activity.
- In each fluid layer we solve for the evolution of ensemble of mutually independent passive-tracer concentration fields. Both flow field and each tracer concentration solution were decomposed into the *large-scale* and *eddy* components by simple running-box filtering in space:

$$\mathbf{u}(t, \mathbf{x}) = \overline{\mathbf{u}}(t, \mathbf{x}) + \mathbf{u}'(t, \mathbf{x}), \qquad C(t, \mathbf{x}) = \overline{C}(t, \mathbf{x}) + C'(t, \mathbf{x}),$$

 \bullet Eddy effects were translated into 2×2 K-tensors that vary in space and time.

Double-Gyre Ocean Model

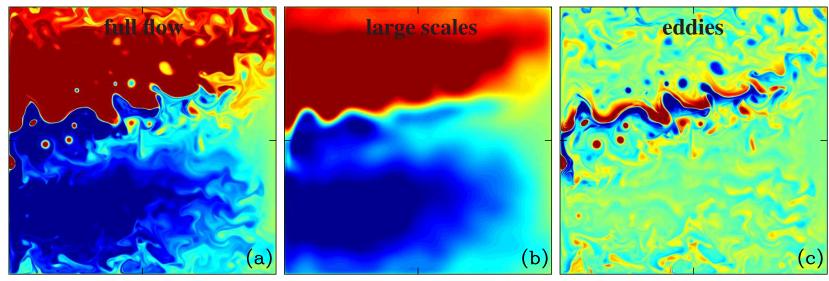
- Square basin of the North Atlantic size; flat bottom; β -plane; steady wind forcing; turbulent solutions; first baroclinic Rossby radius is 40 km; fine grid resolution (3.75 km).
- Governing equations for two-layer quasigeostrophic (QG) potential-vorticity (PV) model:

$$\frac{\partial q_1}{\partial t} + \mathbf{u}_1 \cdot \nabla q_1 + \beta v_1 = \nu \nabla^4 \psi_1 + W$$

$$\frac{\partial q_2}{\partial t} + \mathbf{u}_2 \cdot \nabla q_2 + \beta v_2 = \nu \nabla^4 \psi_2 - \gamma \nabla^2 \psi_2$$

$$q_1 = \nabla^2 \psi_1 + S_1 (\psi_2 - \psi_1), \qquad q_2 = \nabla^2 \psi_2 + S_2 (\psi_1 - \psi_2)$$

Snapshot of the upper ocean PV anomaly and its large-scale and eddy components



Dynamics of Passive Tracers: Eddy Term

 \bullet Each tracer concentration $C(t, \mathbf{x})$ is governed by the corresponding conservation law:

$$\frac{\partial C}{\partial t} + \nabla \cdot (\mathbf{u}C) = \kappa \nabla^2 C + F.$$

• Decomposed fields are substituted back into each tracer equation:

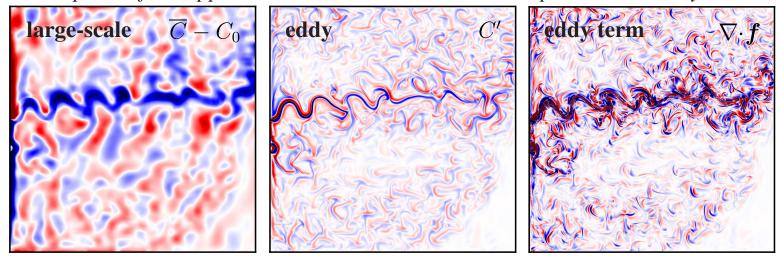
$$\frac{\partial \overline{C}}{\partial t} + \nabla \cdot (\overline{\mathbf{u}}\overline{C}) + \nabla \cdot (\overline{\mathbf{u}}C' + \mathbf{u}'\overline{C} + \mathbf{u}'C') = \kappa \nabla^2 \overline{C} + \kappa \nabla^2 C' - \frac{\partial C'}{\partial t} + F' + \overline{F},$$

where blue color indicates the *eddy term*.

• Non-advective rhs part of the eddy term can be represented as $-\nabla \cdot \mathbf{f}_n$ and absorbed into the tracer *eddy flux*:

$$\mathbf{f}(t,\mathbf{x}) = \overline{\mathbf{u}}C' + \mathbf{u}'\overline{C} + \mathbf{u}'C' + \mathbf{f}_n \qquad \Longrightarrow \qquad \boxed{\frac{\partial \overline{C}}{\partial t} + \nabla \cdot (\overline{\mathbf{u}}\overline{C}) + \nabla \cdot \mathbf{f} = \kappa \nabla^2 \overline{C} + \overline{F}}$$

Snapshot of the upper-ocean tracer concentration components and eddy term



Transport Tensor

• Transport tensor K(t,x) can be found from the assumed flux-gradient relation:

$$\mathbf{f} = -\mathbf{K} \cdot \nabla \overline{C}, \qquad \mathbf{K}(t, \mathbf{x}) = \begin{bmatrix} K_{11}(t, \mathbf{x}) & K_{12}(t, \mathbf{x}) \\ K_{21}(t, \mathbf{x}) & K_{22}(t, \mathbf{x}) \end{bmatrix}.$$

Since **K** has 4 unknowns, the relation is underdetermined. We resolved this problem by considering pairs of different tracers, e.g., C^p and C^q , and by solving the system of equations:

$$\mathbf{f}^p = -\mathbf{K} \cdot \nabla \overline{C^p},$$

$$\mathbf{f}^q = -\mathbf{K} \cdot \nabla \overline{C^q},$$

under the assumption that $K(t, \mathbf{x})$ is unique for both tracers (i.e., tracer-independent). Once $K(t, \mathbf{x})$ is obtained, the eddy term becomes parameterized:

$$\frac{\partial \overline{C}}{\partial t} + \dots = \nabla \cdot (\mathbf{K} \cdot \nabla \overline{C}) + \dots$$

• *Eddy flux reduction*. $\mathbf{K}(t, \mathbf{x})$ can be reduced by squeezing out (large and inert) rotational fluxes via the Helmholtz decomposition:

$$\mathbf{f} = \nabla \Phi + \nabla \times \Psi, \qquad \boxed{\nabla \cdot \mathbf{f} = \nabla^2 \Phi}, \qquad \nabla \times \mathbf{f} = \nabla^2 \Psi,$$

where $\nabla \Phi$ is the divergent flux, and $\nabla \times \Psi$ is the rotational flux.

• *Transport tensor decomposition*. **K** (i.e., its spatio-temporal maps) can be decomposed into its symmetric *diffusion S-tensor* and antisymmetric *advection A-tensor* components:

$$\mathbf{K} = \mathbf{S} + \mathbf{A}, \qquad \mathbf{S} = \begin{bmatrix} S_{11}(t, \mathbf{x}) & S_{12}(t, \mathbf{x}) \\ S_{12}(t, \mathbf{x}) & S_{22}(t, \mathbf{x}) \end{bmatrix}, \qquad \mathbf{A} = \begin{bmatrix} 0 & -A(t, \mathbf{x}) \\ A(t, \mathbf{x}) & 0 \end{bmatrix}.$$

• Diffusion tensor can be locally rotated by the *diffusion angle* $\alpha(t, \mathbf{x})$ until it is diagonalized with the *diffusion eigenvalues* λ_1 *and* λ_2 (these are 3 fundamental S-tensor properties):

$$\mathbf{S}_{\alpha} = \begin{bmatrix} \lambda_1(t,\mathbf{x}) & 0 \\ 0 & \lambda_2(t,\mathbf{x}) \end{bmatrix}$$
.

• Advection tensor results in the flux divergence, which can be written as advection operator:

$$\nabla \cdot \mathbf{f}_{adv} = \frac{\partial A}{\partial x} \frac{\partial C}{\partial y} - \frac{\partial A}{\partial y} \frac{\partial C}{\partial x} = J(A, C),$$

where A acts as the flux streamfunction. We introduce *eddy-induced velocity* (EIV),

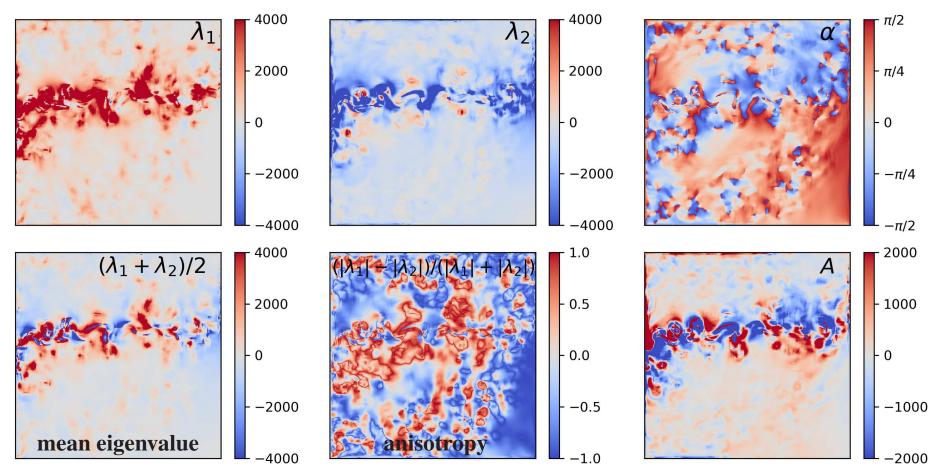
$$\mathbf{u}_*^c = \left(-\frac{\partial A}{\partial y}, \frac{\partial A}{\partial x}\right),\,$$

which is fundamentally different from the bolus velocity used in Gent-McWilliams parameterization.

• Fundamental elements of $\mathbf{K}(t,\mathbf{x})$ are described by spatio-temporal maps of $\lambda_1, \lambda_2, \alpha, A$.

Transport Tensor: Illustration

Snapshot of the upper-ocean fundamental properties of K-tensor



• Note in the figure: (1) prevailing opposite polarity of eigenvalues, (2) large A-tensor, (3) large tensor rotations and anisotropy, (4) significant spatial inhomogeneity.

None of these feature are typically taken into account by eddy parameterizations!

Summary of Results

- The key aspect: we imposed no constraints on **K** and explored it most completly.
- We discovered robust *polar diffusion*, which is a tracer filamentation process characterized by co-existing diffusive and anti-diffusive eddy effects.
- We showed that diffusion is fundamentally insufficient for parameterization and there is *extra advection*.
- *Spatio-temporal variability* of K-tensor is significant, and this raises serious problem with its estimation from the available (mostly Lagrangian) ocean observations.
- *Question 1*: Which properties of transport K-tensor can be simplified for future parameterizations, and what are the consequences?
- Question 2: Should we keep going with flux-gradient relation or abandon/extend it?
- *Question 3*: Is transport K-tensor unique?
- Many other related results are discussed in detail in the series of 7 publications: JFM, JFM, OM, OM, OM, GRL, JPO.