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Mesoscale (Synoptic) Oceanic Eddies and their Diffusive Parameterization

Snapshot of the

observed sea

surface anomaly

shows cyclonic

and anticyclonic

eddies all over

the ocean

• Because eddies have important effects on the large-scale ocean circulation and climate dy-

namics, they have to be either directly resolved, which is computationally very expensive, or

parameterized. Most parameterization approaches involve some turbulent diffusion.

• Turbulent diffusion is based on flux-gradient relation that replaces eddy flux (in large-scale

dynamics for C ) with large-scale gradient and involves transport (tensor) coefficient K :

u′C ′ = −K·∇C =⇒
∂C

∂t
+ u·∇C = ∇·

(

K·∇C
)

,

where overbar and prime assume some scale decomposition: C = C + C ′, u = u + u
′.



Statement of the Problem

• Our novel approach was to diagnose space-time dependent K(t,x) from an eddy-resolving

model and without imposing any constraints or assumptions.

• We employed double-gyre quasigeostrophic (layered) ocean model that represents wind-

driven midlatitude circulation with vigorous eddy activity.

• In each fluid layer we solve for the evolution of ensemble of mutually independent passive-

tracer concentration fields. Both flow field and each tracer concentration solution were decom-

posed into the large-scale and eddy components by simple running-box filtering in space:

u(t,x) = u(t,x) + u
′(t,x) , C(t,x) = C(t,x) + C ′(t,x) ,

• Eddy effects were translated into 2×2 K-tensors that vary in space and time.



Double-Gyre Ocean Model

• Square basin of the North Atlantic size; flat bottom; β-plane; steady wind forcing; turbulent

solutions; first baroclinic Rossby radius is 40 km; fine grid resolution (3.75 km).

• Governing equations for two-layer quasigeostrophic (QG) potential-vorticity (PV) model:

∂q1

∂t
+ u1 ·∇q1 + βv1 = ν∇4ψ1 +W

ui = −
∂ψi

∂y
, vi =

∂ψi

∂x∂q2

∂t
+ u2 ·∇q2 + βv2 = ν∇4ψ2 − γ∇2ψ2

q1 = ∇
2ψ1 + S1 (ψ2 − ψ1) , q2 = ∇

2ψ2 + S2 (ψ1 − ψ2)

Snapshot of the upper ocean PV anomaly and its large-scale and eddy components

full flow large scales eddies



Dynamics of Passive Tracers: Eddy Term

• Each tracer concentration C(t,x) is governed by the corresponding conservation law:

∂C

∂t
+∇·(uC) = κ∇2C + F .

• Decomposed fields are substituted back into each tracer equation:

∂C

∂t
+∇·(uC) +∇·(uC ′ + u

′C + u
′C ′) = κ∇2C + κ∇2C ′

−
∂C ′

∂t
+ F ′ + F ,

where blue color indicates the eddy term.

• Non-advective rhs part of the eddy term can be represented as −∇· fn and absorbed into the

tracer eddy flux:

f(t,x) = uC ′ + u
′C + u

′C ′ + fn =⇒
∂C

∂t
+∇·(uC) +∇·f = κ∇2C + F

Snapshot of the upper-ocean tracer concentration components and eddy term

large-scale eddy eddy term



Transport Tensor

• Transport tensor K(t,x) can be found from the assumed flux-gradient relation:

f = −K·∇C , K(t,x) =

[

K11(t,x) K12(t,x)

K21(t,x) K22(t,x)

]

.

Since K has 4 unknowns, the relation is underdetermined. We resolved this problem by con-

sidering pairs of different tracers, e.g., Cp and Cq, and by solving the system of equations:

f
p = −K·∇Cp ,

f
q = −K·∇Cq ,

under the assumption that K(t,x) is unique for both tracers (i.e., tracer-independent).

Once K(t,x) is obtained, the eddy term becomes parameterized:

∂C

∂t
+ ... = ∇·(K·∇C) + ... .

• Eddy flux reduction. K(t,x) can be reduced by squeezing out (large and inert) rotational

fluxes via the Helmholtz decomposition:

f = ∇Φ +∇×Ψ , ∇·f = ∇
2Φ , ∇×f = ∇

2Ψ ,

where ∇Φ is the divergent flux, and ∇×Ψ is the rotational flux.

• Transport tensor decomposition. K (i.e., its spatio-temporal maps) can be decomposed into

its symmetric diffusion S-tensor and antisymmetric advection A-tensor components:

K = S +A , S =

[

S11(t,x) S12(t,x)

S12(t,x) S22(t,x)

]

, A =

[

0 −A(t,x)

A(t,x) 0

]

.



• Diffusion tensor can be locally rotated by the diffusion angle α(t,x) until it is diagonalized

with the diffusion eigenvalues λ1 and λ2 (these are 3 fundamental S-tensor properties):

Sα =

[

λ1(t,x) 0

0 λ2(t,x)

]

.

• Advection tensor results in the flux divergence, which can be written as advection operator:

∇·fadv =
∂A

∂x

∂C

∂y
−
∂A

∂y

∂C

∂x
= J(A,C) ,

where A acts as the flux streamfunction. We introduce eddy-induced velocity (EIV),

u
c
∗
=
(

−
∂A

∂y
,
∂A

∂x

)

,

which is fundamentally different from the bolus velocity used in Gent-McWilliams parameter-

ization.

• Fundamental elements of K(t,x) are described by spatio-temporal maps of λ1, λ2, α, A .



Transport Tensor: Illustration

Snapshot of the upper-ocean fundamental properties of K-tensor

mean eigenvalue anisotropy

• Note in the figure: (1) prevailing opposite polarity of eigenvalues, (2) large A-tensor, (3)

large tensor rotations and anisotropy, (4) significant spatial inhomogeneity.

None of these feature are typically taken into account by eddy parameterizations!



Summary of Results

• The key aspect: we imposed no constraints on K and explored it most completly.

• We discovered robust polar diffusion, which is a tracer filamentation process characterized

by co-existing diffusive and anti-diffusive eddy effects.

• We showed that diffusion is fundamentally insufficient for parameterization and there is extra

advection.

• Spatio-temporal variability of K-tensor is significant, and this raises serious problem with its

estimation from the available (mostly Lagrangian) ocean observations.

• Question 1: Which properties of transport K-tensor can be simplified for future parameteri-

zations, and what are the consequences?

• Question 2: Should we keep going with flux-gradient relation or abandon/extend it?

• Question 3: Is transport K-tensor unique?

• Many other related results are discussed in detail in the series of 7 publications: JFM, JFM,

OM, OM, OM, GRL, JPO.


