

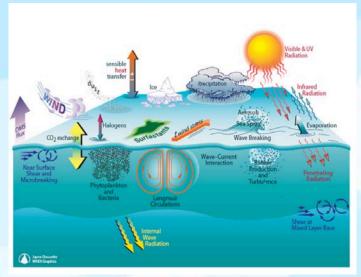
Предсказуемость атмосферной циркуляции совместной моделью SLNE: первые результаты

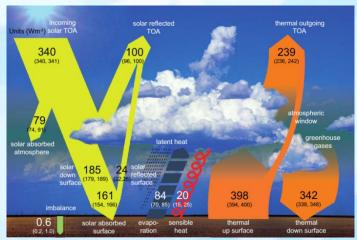
Фадеев Р. Ю., Реснянский Ю.Д., Струков Б.С., Зеленько А.А., Беляев К.П., Кулешов А.А., Толстых М.А., Мизяк В.Г.

ИВМ РАН Гидрометцентр России МФТИ ИПМ РАН

e-mail: rost.fadeev@gmail.com

21.11.2024, Турбулентность, динамика атмосферы и климата


Прямые и обратные связи в системе атмосфера – океан – морской лед


Элементы совместной модели должны:

- а) воспроизводить процессы и явления в соответствующих средах;
- б) поставлять граничные условия для моделей смежных сред.

Потоки скрытого и явного тепла, обычно, описываются формулами вида:

$$F_A = -C_A \left(A_{atm} - A_{surf} \right) U_{atm},$$

Потоки тепла на границе атмосфераповерхность и их среднегодовые величины, рекомендованные IPCC.

ПЛАВ072L96

Разработка версии ПЛАВ с «хорошими» осредненными характеристиками.

Некоторые усовершенствования ПЛАВ:

- Деятельный слой суши (модель многослойной почвы ИВМ РАН НИВЦ МГУ), подынверсионные облака, поверхность морского льда (Фадеев и др., 2019; Травова и др., 2022).
- Описание ледников на суше (Fadeev et al, 2022).
- Параметризация глубокой конвекции, коэффициенты гипердиффузии и параметризация пограничного слоя атмосферы и облачности.
- Уточнение характеристик поверхности и способа описания снежного покрова.
- Новая схема расчета предельной длины перемешивания (Bougeault et al, 1989).
- Параметризация изменчивости скорости подсеточного ветра (Фадеев, 2023).
- Новая климатология аэрозолей (MACv2).
- Модель озер LAKE (Fadeev, Stepanenko, 2024).

М.А. Толстых, Р.Ю.Фадеев, В.В.Шашкин, Р.Б.Зарипов, С.В.Травова, Г.С.Гойман, К.А.Алипова, В.Г.Мизяк, В.А.Тищенко, Е.Н.Круглова

Система долгосрочного метеорологического прогноза ПЛАВ072L96, МиГ, 2024.

Глобальные модели среднесрочного прогноза погоды

Характерное разрешение: 7-25 км., 50-137 уровней по вертикали, ~10⁹ ячеек

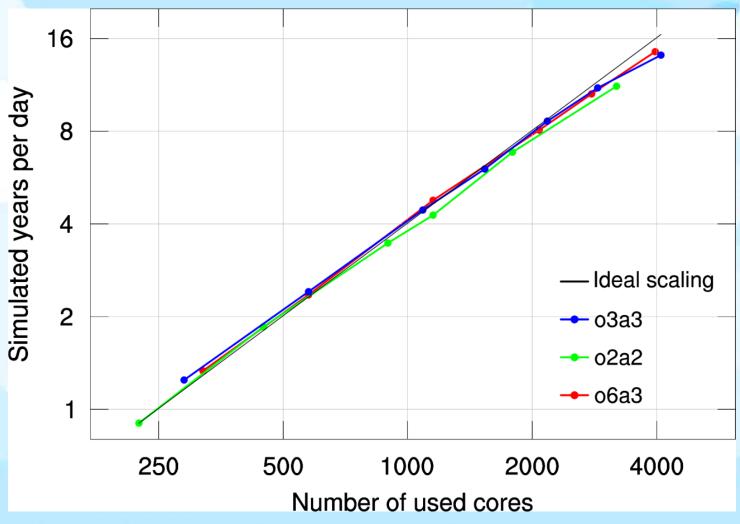

	Forecast Centre	Country	2023	Computer		
	ECMWF (Europe)	Europe	Coupled O-A 0.25 TCo1279 L137 (~9km)	Bull Sequana XH2000, 1920 nodes x 4 [1PFlop per cluster] [30 PFlops]		
	Met Office	UK	Coupled O-A oc=0.25L75 10km L70 7days	Cray XC40 3040+3040+6720 nodes [15.5PFlops]		
	Météo France	France	~T _L 1198c2.2 L105 (7km on W Europe to 36km)	ATOS BULL Sequana XH2000, AMD Epyc Rome, 2290 nodes x 2, 128 cores/node, (Unknown) [2 x ~10.3Pflops]		
	DWD	Germany	13 km L120 (6.5 km L74 for Europe)	NEC SX Aurora; 178+232 nodes with 8 Tsubasa 10AE vector engines (VEs) per node, 8 cores per VE (total 11392+14848 cores) SP 200+260 TF; PP 3383+4410 TF		
	НМС	Russia	0.1°x0.08° L104	Cray XC40-LC, 976 nodes x36 cores [1293 TFlops] SGI ICE-X, 36 nodes x 20 cores,(4.3)[14 TFlops] RSC Tornado,96 nodes x 16 cores,(4.5)[35 TFlops]]		
	NCEP	USA	C768 L127 (13 km)	CRAY EX (336,128 x 2 cores) (?? TFs sust., 12,100 x2 TFs peak)		
	Navy/FNMOC/NRL	USA	T681L60	SGI 8600 3.05 PFLOPS FY22: HPE Cary EX 12.8 PFLOPS		
	СМС	Canada	Yin-Yang (0.14°x0.14°) L84 coupled atm-ocean-ice	2 x Lenovo SV650 with 1494 nodes (239K cores)		
	CPTEC/INPE	Brazil	20km L64	CRAY XE 17472 cores (17,6) [256] CRAY XC50 4160 cores (193) [313.5]		
	JMA	Japan	TL959 L100	CRAY XC50 (Vendor: Hitachi), 2*2816 nodes (?) [2x9,083]		
V	/GNE table (part 2	China 2a): http://wgne.	12.5km L87 .meteoinfo.ru/nwp-systems-	Sugon, 98432 cores -wgne-table/wgne-table/		

Совместная модель SLNE

Атмосфера: ПЛАВ072L96, сетка 0.9°x0.72°, 96 уровней.

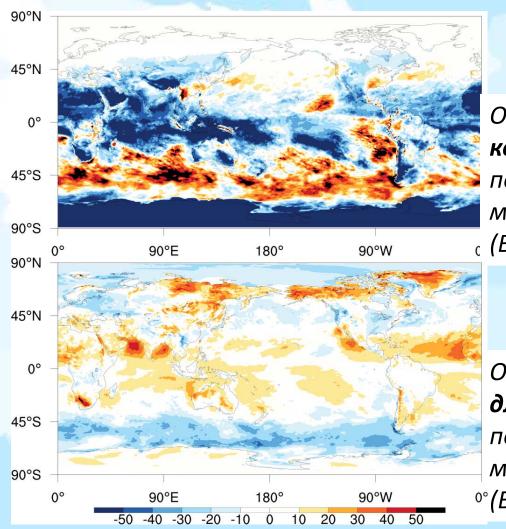
Океан+лед: NEMO+SI3, сетка – ORCA025, 75 уровней в океане.

Шаг по времени: ПЛАВ — 1440 с., NEMO — 720 с.



Компоненты

Расчетные сетки и декомпозиция данных в моделях атмосферы и океана


Масштабируемость совместной модели

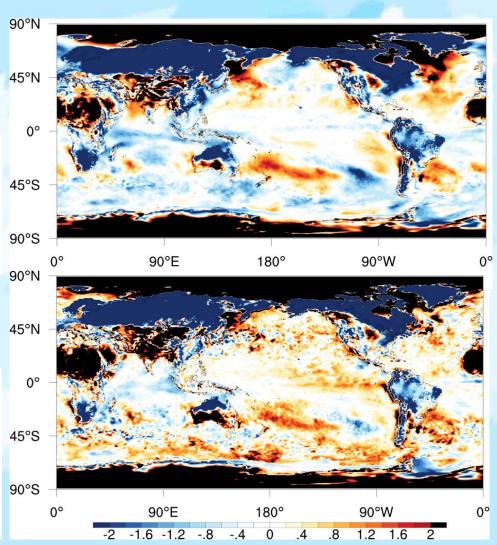
На рисунке приводится скорость расчета по модели SLNE (в терминах числа модельных лет за сутки) в зависимости от числа задействованных процессорных ядер вычислительной системы Cray XC-40 ГВЦ Росгидромета.

Анализ потоков атмосфера-океан в SLNE

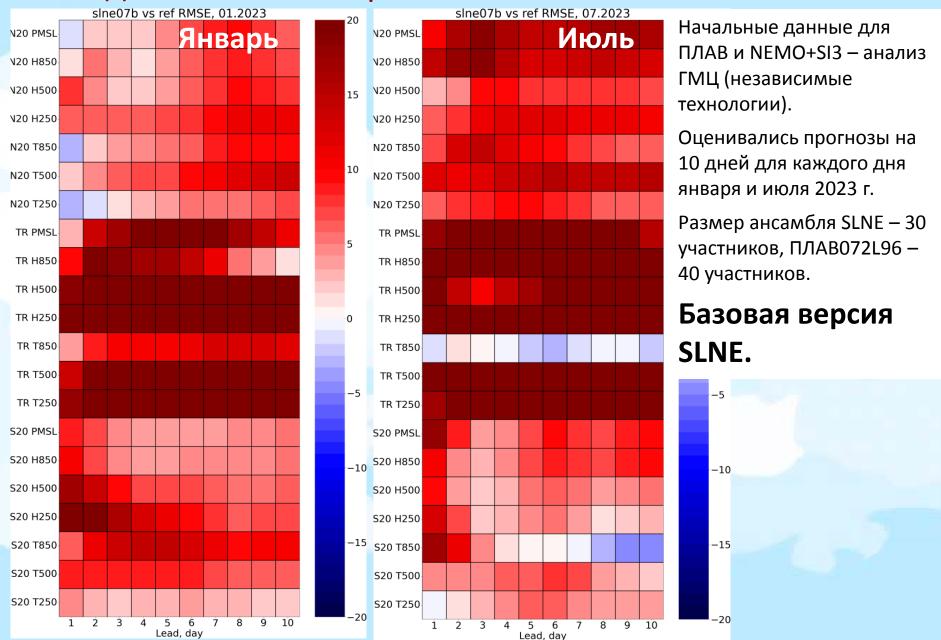
На рисунках представлены отклонение осредненных за январь 2020 г данных моделирования по совместной модели в сравнении с реанализом CFSR, кторый используется в технологии усвоения океанографических данных Гидрометцентра России.

Отклонение потока коротковолнового излучения на поверхности осредненного за первый месяц интегрирования от CFSR (Вт/м²)

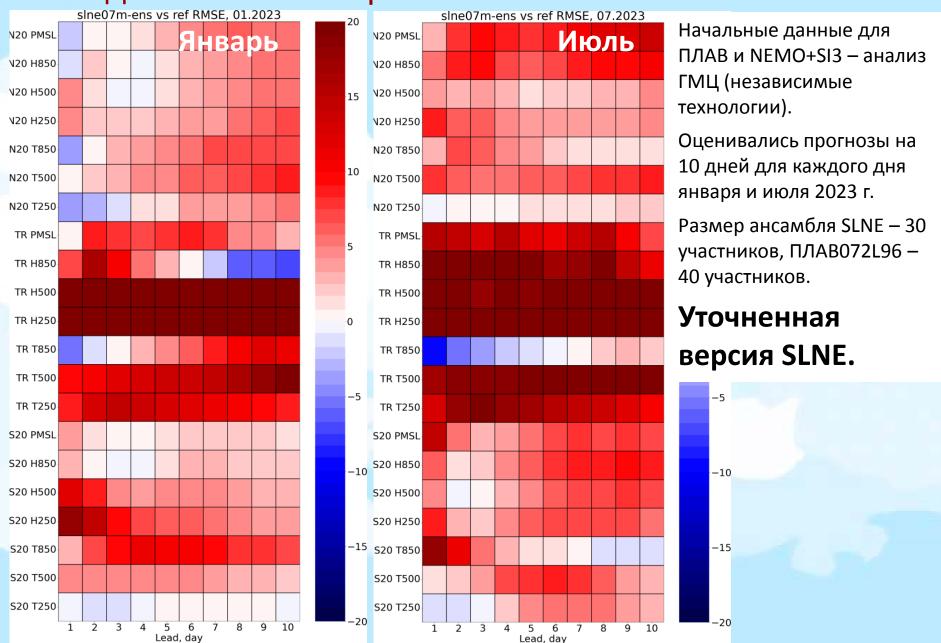
Отклонение потока **длинноволнового** излучения на
поверхности осредненного за первый
месяц интегрирования от CFSR


° (Вт/м²)

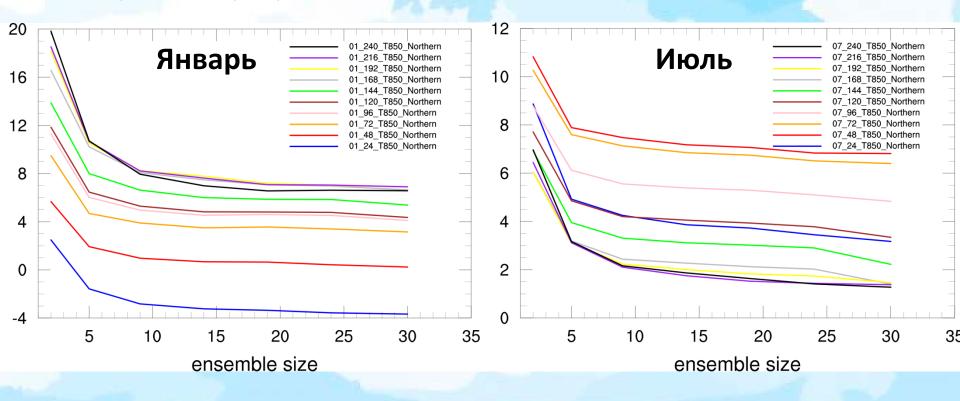
Анализ потоков атмосфера-океан в SLNE


На рисунках представлены отклонение осредненных за январь 2020 г данных моделирования по совместной модели в сравнении с реанализом CFSR, кторый используется в технологии усвоения океанографических данных Гидрометцентра России.

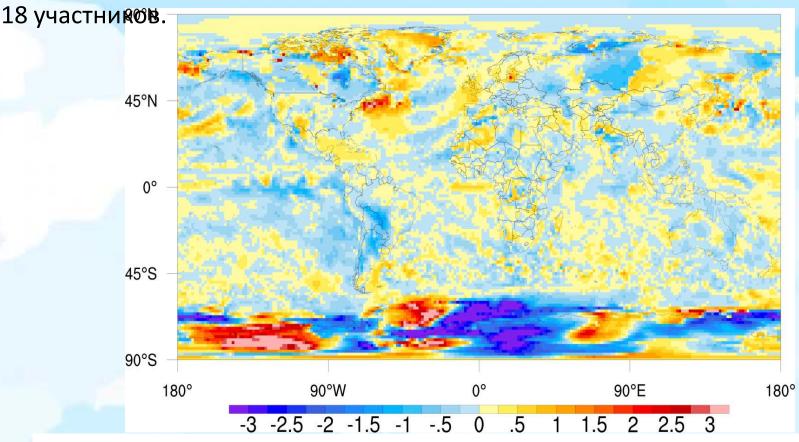
Отклонение температуры **Т2т** воздуха на высоте 2 метра осредненной за первый месяц интегрирования от CFSR (°K)


Отклонение **температуры поверхности** (для океана — на
глубине 0.5 м) осредненной за
первый месяц интегрирования от
CFSR (°K)

Ретроспективный ансамблевый среднесрочный прогноз на 10 дней по SLNE в сравнении с ПЛАВ072L96



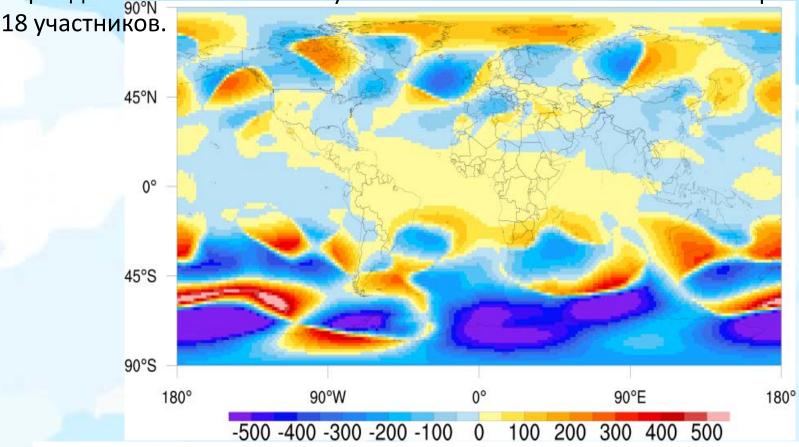
Ретроспективный ансамблевый среднесрочный прогноз на 10 дней по SLNE в сравнении с ПЛАВ072L96


Зависимость осредненной относительной ошибки прогноза T850 по SLNE и ПЛАВ072L96 в зависимости от размера ансамбля

Кривые разных цветов соответствуют заблаговременности прогноза от 24 до 240 час. Относительная ошибка приводится для поля температуры на высоте 850 гПа для северного полушария.

Ретроспективный субсезонный прогноз по SLNE

Аномалии в ретроспективном прогнозе с заблаговременностью 6 недель для 30 мая 2010 г. приводятся по отношению к аналогичным прогнозам от 30 мая за период с 2010 по 2022 гг. полученных по той же технологии. Размер ансамбля -



Разница отклонения средней по ансамблю аномалии **температуры** на высоте 2 метра в SLNE и ПЛАВ, осредненной за период с 1 по 14 июля 2010 в прогнозе от 30 мая 2010.

Fadeev, RJNAMM, 2024

Ретроспективный субсезонный прогноз по SLNE

Аномалии в ретроспективном прогнозе с заблаговременностью 6 недель для 30 мая 2010 г. приводятся по отношению к аналогичным прогнозам от 30 мая за период с 2010 по 2022 гг. полученных по той же технологии. Размер ансамбля -

Разница отклонения средней по ансамблю аномалии аномалии **геопотенциала** на высоте 500 гПа в SLNE и ПЛАВ, осредненной за период с 1 по 14 июля 2010 в прогнозе от 30 мая 2010.

Fadeev, RJNAMM, 2024

Заключение

- 1. На основе оперативных технологий Гидрометцентра России реализована совместная модель атмосферы, океана и морского льда SLNE.
- 2. Подобраны оптимальные параллельные конфигурации SLNE.
- 3. Создана *технология* ансамблевого прогнозирования на основе SLNE.

В сравнении с ПЛАВ072L96 совместная модель позволяет более точный субсезонный прогноз сильных аномалий погоды.

Направления дальнейших исследований:

- 1. Повышение точности описания прямых и обратных связей в совместной модели, настройка и тестирование совместной модели.
- 2. Повышение согласия начальных состояний атмосферы и океана.

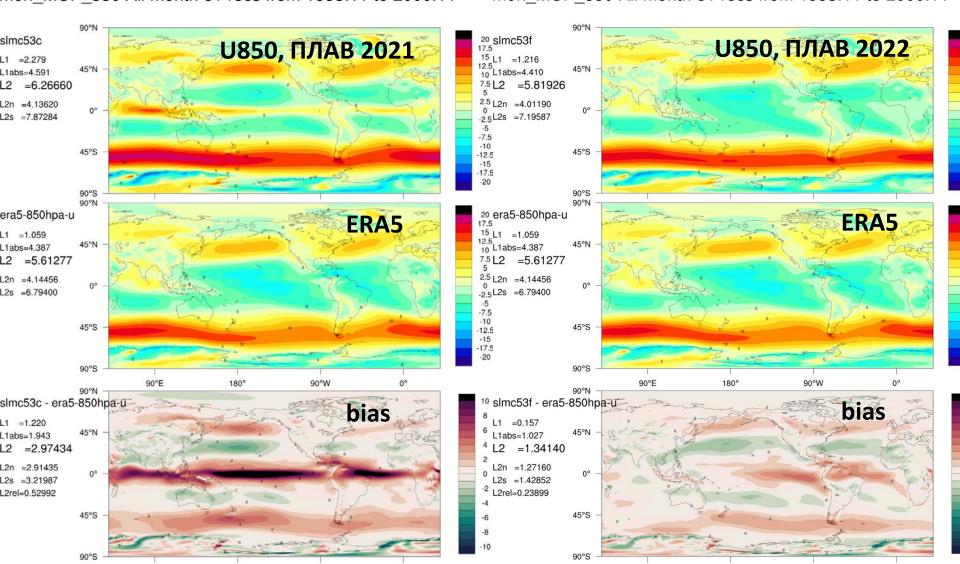
Спасибо за внимание!

Вопросы?

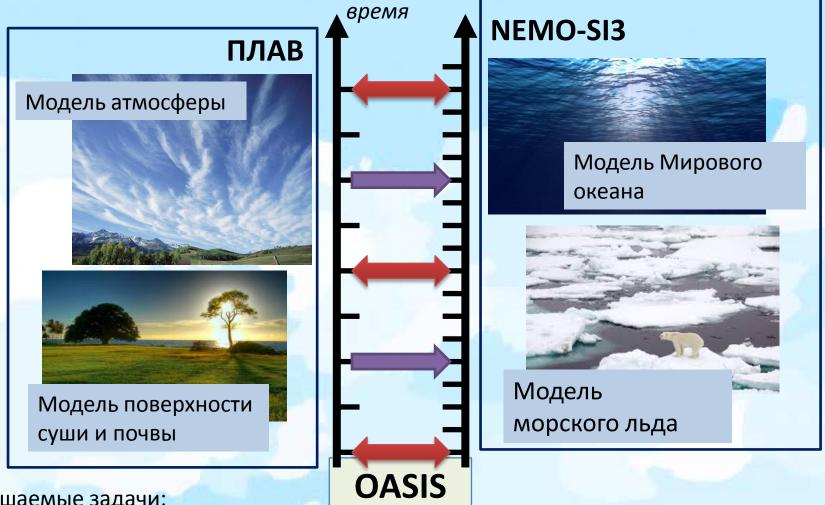
Ростислав Юрьевич Фадеев rost.fadeev@gmail.com
@rostfa

Работа выполнена при поддержке РНФ № 22-11-00053

Оценка точности субсезонного прогноза по SLNE и ПЛАВ в сравнении ERA5.


Variable,	Forecast date	Predicted time	Region	SLAV	SLNE	SLAV	SLNE	SLAV	SLNE
units		range, days		bias	bias	rmse	rmse	acc	acc
$\overline{T2m,^{\circ}K}$	May 30	28-42	glob	-0.87	-0.5	2.73	2.72	0.1	0.1
			trop	-0.47	-0.27	1.79	1.79	0.29	0.37
			nort	-1.36	-1.42	3.2	3.24	0.1	0.1
			sout	-0.77	0.2	2.93	2.87	0.05	0.04
$\overline{T2m,}{}^{\circ}K$	June 15	15–28	glob	-0.78	-0.47	2.74	2.64	0.24	0.11
			trop	-0.61	-0.38	1.87	1.82	0.46	0.41
			nort	-0.65	-0.85	3.1	3.09	0.23	0.14
			sout	-1.1	-0.18	3.03	2.79	0.2	0.03
h500, m	May 30	28-42	glob	13.26	17.45	55.44	53.85	0.09	0.08
			trop	28.40	30.31	30.19	31.82	0.08	0.07
			nort	30.54	30.96	54.59	54.59	-0.05	0.03
			sout	-19.02	-8.84	71.51	67.24	0.12	0.11
h500, m	June 15	15–28	glob	16.22	20.24	62.	61.1	0.11	0.03
			trop	27.07	28.57	29.13	30.19	0.16	0.12
			nort	48.39	48.19	68.49	68.88	-0.07	0.
			sout	-26.89	-16.22	75.43	72.64	0.11	0.03
mslp, hPa	May 30	28-42	glob	0.05	0.04	5.17	5.	0.11	0.1
			trop	0.22	0.13	2.	2.05	0.33	0.19
			nort	3.	2.81	5.18	5.06	0.05	-0.02
			sout	-3.08	-2.83	6.93	6.64	0.11	0.12
mslp, hPa	June 15	15-28	glob	0.06	0.07	5.36	5.27	0.12	0.05
			trop	0.26	0.	2.13	2.11	0.38	0.43
			nort	3.25	3.02	5.5	5.24	0.13	0.10
			sout	-3.35	-2.85	7.04	7.05	0.11	0.

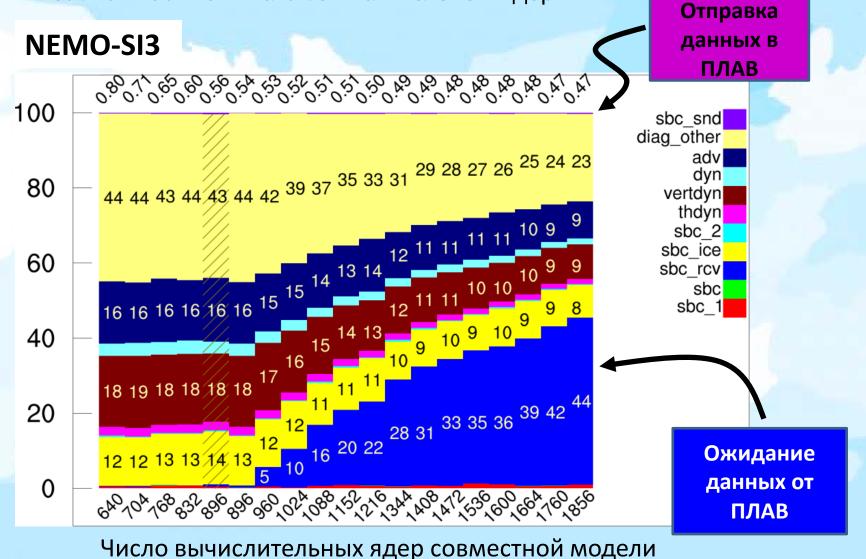
Зональный компонент скорости на высоте 850 гПа.


Картинка справа соответствует версии ПЛАВ с рядом усовершенствований в способе описания характеристик поверхности, параметров глубокой конвекции и облачности, коэффициентов гипердиффузии и уточненную схему глубокой конвекции.

mon MUP 850 All month 61 recs from 1995.11 to 2000.11

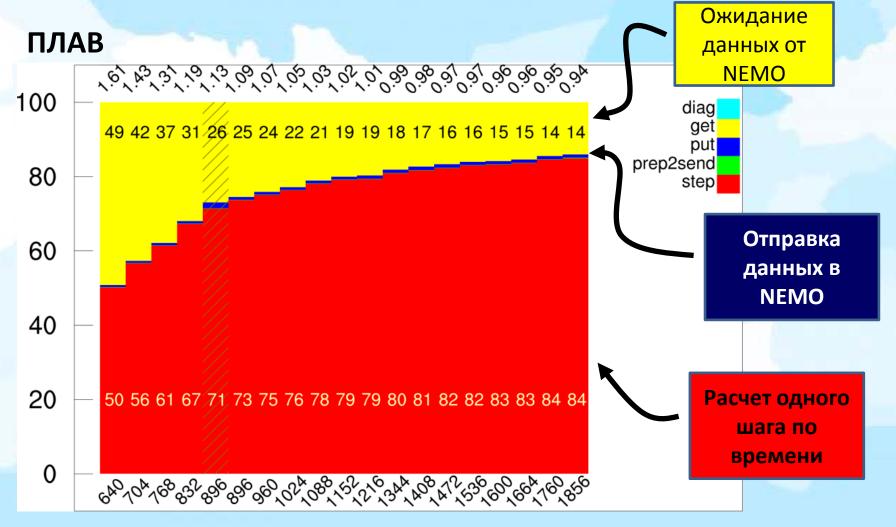
mon_MUP_850 All month 61 recs from 1995.11 to 2000.11

Архитектура совместной модели.



Решаемые задачи:

- Программная реализация, отладка, масштабируемость и поиск оптимальных параллельных конфигураций совместной модели.
- Физически правильный результат: соответствие мгновенных и осредненных модельных характеристик наблюдениям (реанализу).


Производительность совместной модели

Относительное время выполнения отдельных программных блоков модели NEMO по сравнению со временем расчета одного шага по времени в зависимости от числа вычислительных ядер.

Производительность совместной модели

Относительное время выполнения отдельных программных блоков модели ПЛАВ по сравнению со временем расчета одного шага по времени в зависимости от числа вычислительных ядер.

Число вычислительных ядер совместной модели