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Preface

During my long scientific career, which began in 1955, I worked on a number of
processes in the atmosphere, in the ocean, and in astrophysics, and in geophysics
on some of them, I would like to think I left a mark. About 350 articles have been
written, of which over 60 were written by me only and six monographs. I taught a
lot at the Department of Atmospheric Physics of the Faculty of Physics of Moscow
M. B. Lomonosov State University.in 1975—2010 and from 1973 to 2019 at the
Department of Ocean Thermohydrodynamics of the Moscow Institute of Physics
and Technology. Teaching served as a stimulus for writing monographs.

My main achievements until 2011 were published in the book “Statistics and
Dynamics of Natural Processes and Phenomena”, M.: Krasand, 2012, 398 pages.
Duringmy scientific activity, I devoted a lot of time to scientific, public, and scientific-
organizational topics not only in the country but also abroad, participating in various
councils, committees, commissions, editorial boards, etc. From 1988 to 2002, I was
elected three times as amember of the Presidiumof theAcademy. From01.01.1990 to
31.12.2008, I was the director of the Institute of Atmospheric Physics of the Russian
Academy of Sciences, i.e., day after day for 19 years. In the years of the Presidium,
my employment was there, and in the turbulent 1990s, I led the Institute voluntarily,
drawing no money, albeit meager, from the IFA salary fund. During this period, our
IFA received various foreign grants. But in these years, I did significant work, for
example, explaining the energy spectrum of cosmic rays, Gutenberg—Richter law of
frequency—magnitude of earthquakes, I found patterns of hurricane development—
necessary, but not sufficient, conditions for their development and others. The basis
for the construction of these theories was the theory of similarity and dimension, as
in previous work.

However, I remembered the late 1950s—early 1960s, when many scientists said
that “the theory of similarity is a similarity of a theory” and even in the late 1990s,
after my lecture at the Moscow Lebedev Institute of Physics on the spectrum of
cosmic rays, they demanded the physical model, i.e. kinetic equations. Only in 2017,
I did suddenly realize that such a model could be the probabilistic laws of Andrey
Nikolaevich Kolmogorov and his school, developed by his students A. M. Obukhov,
then A. M. Yaglom, A. S. Monin, then G. I. Barenblatt, who developed the general
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principles of their teacher into practicalmethods and applied thesemethods to specific
phenomena and processes, primarily to turbulence (see Chap. 2). Now the theory of
similarity and dimension is an exact theory (see Barenblatt, 2003: Scaling (Vol. 34).
Cambridge University Press.)

Therefore, the time has come to present a description of many processes precisely
from the point of view of Andrei Nikolayevich’s main two-page work in 1934, which
contains the principles of a description of not only turbulence, as I understood by
mid-2017, but also sea wind waves, tropical and polar hurricanes, mini-hurricanes on
the sea surface in the form of spiral eddies discovered by satellites only at the end of
the twentieth century, the statistical structure of inhomogeneities of the gravitational
field and the surface topography of celestial bodies, so called the Kaula’s rule, etc.
The main understanding to apply is that the mean square of velocity is the process
energy per unit mass.

These are all the latest discoveries, deeply understood only in the context of
the ideas of A. N. Kolmogorov in 1934, brought by his students listed above to
practical methods for describing specific phenomena and processes. I would hope,
as the scientific grandson of a great mathematician and physicist and as a student
and colleague of his students mentioned above, that the examples presented here
describing specific processes and phenomena, many of which remained mysteries
for decades,will serve as examples for understanding future discoveries. Probabilistic
laws and the theory of similarity and dimensions are theways to understand theworld
around us. I have two important epigraphs from the classics of science. Initially, I
wanted to have a third epigraph. Here it is:

Upon this gifted age, in its dark hour,

Rains from the sky a meteoric shower

Of facts … they lie unquestioned, uncombined

Wisdom enough to leech us of our ill

Is daily spun, but there exists no loom

To weave it into fabric.

Edna St. Vincent Millay (1892–1950).

Edna is a wonderful American poet, known not only for her magnificent poems
but also for her stormy romances. These lines clearly reflect the dramatic situation in
the science of the surrounding world of the twentieth century. With too many poets,
inexplicable by them the existing science. The wisdom to cure us is the daily bustle.

This book is something like an attempt to develop a unified view of the
macroworld. Each of the paragraphs was written in such a way that after Chap. 1 it
could be understood independently.

I would like to thank Vera Grigorievna Kochina for her invaluable assistance in
the work, for the repeated typing and re-typing of the chapters of the book, which
were discussed many times with Evgeniy Borisovich Gledzer and Otto Guramovich
Chkhetiani, long-term collaborators.

The following is a list of the most frequently occurring links in the text, which
are marked with abbreviations:



Preface vii

AHК34. Kolmogorov A. N. Zufällige Bewegungen // Ann. Math. 1934. V. 35. P.
116–117.
G18. Golitsyn G. S. The laws of random motions by A.N. Kolmogorov.
Meteorology and Hydrology 2018. №3, 5–15.
MY71, 75. Monin A. S. Yaglom A. M. Statistical Hydromechanics V.1, V2 MIT
Press. 1971. 1975.
GLG10. Gledzer E. B. andGolitsynG. S. Scaling and finite ensembles of particles
in motion with energy influx. Dokl. (2010). 433, (3), 466-470.
BPW. Bridgman P. W. (1932) Dimensional Analysis—Yale Univ. Press. 2nd Ed.
B09. Barenblatt G. I. Scaling—CUP, 2003—171 p.).
G12. Golitsyn G. S. Statistics and Dynamics of processes and phenomena in
Nature. Moscow: Krasand Poll, 2012 (in Russian). 198 p.

Prof. Georgy Golitsyn
Academician of the Russian Academy of Sciences

Moscow, Russia

The 2021 Nobel Prize in Physics has been awarded to Klaus Hasselmann, Syukuro
Manabe, andGiorgioParisi for their StudyofClimateChange, andComplexSystems.
In particular, the Nobel Committee for the first two said: “for the physical modelling
of Earth’s climate, quantifying variability and reliably predicting global warming”
and for the third one “for the discovery of the interplay of disorder and fluctuations
in physical systems from atomic to planetary scales”.

This award was in recognition of the contribution of Complex Systems science
to the Climate Change phenomenon.

This book illustrates not only the current knowledge about the stochasticity of
nature but also underlines the most basic unanswered relevant questions of envi-
ronmental dynamics. The second part of the book is devoted to the climate system
considered as a complex and complicated system. It mainly focuses on the major
contributions ofmy research group to the topicsmentioned in the first part of the book
which is excellently written by Prof. GeorgyGolitsyn. I must confess that writing this
book with him was an unforgettable venture in which I gained an excellent academic
experience.

Prof. Costas Varotsos
Athens, Greece



About this book

The first part of the book introduces the equation of the random motions by A. N.
Kolmogorov proposed in 1934. In 1959 A. M. Obukhov found the second moments
of probability distribution for it as 〈u2i (t)〉 = εt, 〈uixi(t)〉 = εt2, 〈x2i (t)〉 = εt3,
where ε is the diffusion coefficient in the velocity space, the rate of the energy (or
any intensity) generation per unit mass. From these moments A. M. Obukhov has
obtained the laws of inertial turbulence of 1941 including the Richardson—Obukhov
one. From the energy (intensity) moment is producing histograms and differential
probability distributions for the events flux such as earthquakes and this makes the
Gutenberg—Richter empirical law as the theory of probability law, TPL. A number
of other empirical laws become TPL. Pareto’s rule in social sciences and the Zipf law
canbeunderstood also in thisway.The thirdmoment describes the randomareas, such
as histograms for lithospheric plates size distributions, mass of spiral galaxies, some
features of clouds. Cosmic rays spectra, Kaula’s rule for relief spectra of celestial
bodies etc. also became TPLs. The empirics and those moments may be used for ε.

The book’s second part highlights significant findings in the study of nonlinear
dynamics within climate system components. It begins by introducing a tool that
separates dynamical and chemical variability in ozone, challenging the previous
belief that chemical processes were the primary influence on the ozone layer. Then,
a key discovery of the second author of this book from 2002 revealed that major
stratospheric sudden warmings could occur in the Southern Hemisphere, leading
to the splitting of the Antarctic ozone hole. This emphasized the importance of
accounting for long-range correlations in predictive models of global geophysical
variables. This understanding is crucial for grasping the complexities of geophysical
dynamics over extended time scales.

In the following, it examines the linearity assumption in reducing solar and
volcanic forcings to radiative equivalents. It finds that variability in models is weak
at centennial scales, and that solar and volcanic forcings combine in a nonlinear
manner over longer periods, affecting model sensitivity.
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Finally, the introduction of the concept of “natural time” is presented as a valuable
tool for predicting extreme geophysical events. This approach has led to the devel-
opment of a nowcasting tool that successfully analyzes the evolution of complex
systems, with examples including El Niño, solar radiation, air pollution, cyclones,
and heatwaves, all of which have significant societal impacts.
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Chapter 1
Necessary Notions from the Theory
of Stochastic Processes

1.1 Correlation and Structure Functions, Energy Spectra

To facilitate the reader’s understanding, we will now present the fundamental
formulas of the theory of stochastic processes that are essential for the subsequent
discussions. While some of these formulas are well-known, others are only found
in obscure publications, and a few are being cited for the first time. Although these
formulas primarily focus on the initial two moments of probability distributions,
they possess a straightforward structure and content, yet their level of familiarity
is not widespread. Certain formulas can be derived by considering similarity and
dimensionality, thus the material presented here may offer further validation for their
accuracy and applicability limits, as well as for the analysis of empirical data. The
exposition will specifically address temporal processes, which pertain to processes
in a one-dimensional space. The statistical theory of random vector fields was orig-
inally developed by A. M. Obukhov in the 1940s, and a comprehensive explanation
can be found in volume II of the book authored by A. S. Monin and A. M. Yaglom,
referred to as MY75.

Consider a time-stationary stochastic process a(t) for which there is an average
value:

〈a〉 = lim
T→∞

1

T

T∫

0

a(t)dt (1.1)

and correlation function

Ba(τ ) = 〈a(t + τ)a(t)〉 = σ 2
a f (τ ), σ 2

a ≡ 〈
a2

〉
. (1.2)

It corresponds to the Fourier transform, called the spectral energy density of the
process in question:
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Ea(ω) = 2

π

∞∫

0

Ba(τ ) cosωτdτ, (1.3)

and vice versa

Ba(τ ) =
∞∫

0

E(ω) cosωτdω. (1.4)

The last formula shows that:

Ba(τ = 0) = 〈
a2

〉 =
∞∫

0

Ea(ω)dω ≡ σ 2
a , (1.5)

fromwhere it is evident that the spectral density, the functionEa(ω) accurately reflects
its purpose by providing the energy distribution based on the frequency ω = 2π/τ

where τ is the time period. The correlation function is normalized to its variance, and
therefore in (1.2) the function f (τ ) cannot exceed one.

For the convergence of integrals in (1.3)–(1.5), the corresponding behavior of
sub-integral functions at zero and infinity is necessary. Since the function Ea(ω)

describes the distribution across the spectrum of the square (energy) of our random
process a (t), it must be non-negative everywhere: Ea(ω) ≥ 0 for 0 < ω < ∞. This
imposes limitations on the kind of correlation function Ba(τ ), according to (1.3) and
(1.4). For example, the function Ba(τ ) in (1.3) cannot fall linearly to zero at some τ ,
and then is zero precisely because, as is easy to see, its Fourier transform then would
have negative regions on the frequency axis ω.

Here are three examples MY75 of “correct” correlation functions and their
corresponding spectral densities normalized to dispersion σ 2

α :

B(τ ) = e−aτ (1.6)

E(ω) = 2a

π
(
a2 + ω2

) (1.7)

B(τ ) = e−aτ 2
, E(ω) = e−ω2/4a

(aπ)1/2
; (1.8)

B(τ ) = (aτ)vKv(aτ), E(ω) = �(v + 1)a2v

π
(
a2 + ω2

)v+1/2 , (1.9)

where Kv is the MacDonald function with an index of v. The spectrum (1.7) is also
called the Cauchy–Lorentz distribution.

Consider now the process u(t), such that:
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or (1.10)

If the process a (t) was stationary in time, then the integral from it will be a random
process with stationary increments. The theory of such processes was developed by
A. N. Kolmogorov in 1940, MY75, when he began to create a mathematical tool
for studying the theory of turbulence, starting at the invitation of O. Y. Schmidt in
1939 to work in the new Institute of Theoretical Geophysics of the Academy USSR
of Sciences. For such processes, it is impossible to determine any average value or
correlation function.However, it is possible to construct (andmeasure) the probability
distribution for the average values of the differences in the quantities u (t) taken at
two points in time: t1 and t2. The corresponding second moment was called by A.
N. Kolmogorov a structure function. He showed that for processes with stationary
increments, this function depends only on the difference in difference t2 − t1 = τ :

Du(τ ) = 〈[u(t + τ) − u(t)]2〉. (1.11)

The structure function of this formula can also be determined for stationary
stochastic processes. Then the connection between the structure and correlation
functions of such processes is obvious:

D(τ ) = 2[B(0) − B(τ )]. (1.12)

For the structure function of processes with first-order stationary increments, it is
possible to introduce a spectral density with a ratio, also MY 75:

D(τ ) = 2

∞∫

0

(1 − cosωτ)E(ω)dω. (1.13)

Most important to us in the future is the example of a power structure function.

D(τ ) = Aτ γ , 0 < γ < 2, (1.14)

the spectrum of which is determined by the ratios:

E(ω) = C/ωγ+1,C = Aπ−1�(γ + 1) sin(πγ /2), (1.15)

where �(γ + 1) = γ�(γ )—gamma function.
Power regularities cannot be implemented over the entire infinite interval of times

and their inverse frequencies ω = 2π/t. There are always internal and external
boundaries for the execution of power regularities. The internal scale is usually asso-
ciated with the dissipative mechanisms inherent in the system under consideration,
and the external scale is determined by boundary conditions, for example, the lifetime
of the system or its dimensions.
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In the development of these concepts, Barenblatt and Zeldovich (1972), see also
B09 introduced the concept of intermediate asymptotics, which is performed on the
finite interval of the quantity under study. Sometimes, as in the case of the statistical
description of the relief (see Chap. 9), one asymptotic may pass into another due to
a change like the forces acting in the system, Chap. 8.

In the 1950s, Yaglom developed a general theory of stochastic processes with
stationary increments of arbitrary order n. For example, for the characteristics of
sea waves, oceanographers use the frequency spectrum of elevations of the water
surface. This spectrum of vertical displacements is the spectrum of the correlation
function of velocities arising from g sinβ, g = 9.8m/s2, and β—the slope of the
surface in the wave, which is a random stationary process. At n = 2, the growth
of the structure function is limited from above by a power index equal to 4, not 2,
as in n = 1, see (1.14). Τhis leaves the ratio (1.13) with n = 2, binding structure
function and spectral density. Using known trigonometric relationships, it can also
be rewritten as

D(τ ) = 4

∞∫

0

sin2
(ωτ

2

)
E(ω)dω. (1.16)

Given the limited interval of execution of power regularities both from above and
below, the relation (1.16) can be reasonably corrected for its convergence at near-zero
frequencies and at infinity.

For random processes with second-order stationary increments, it is possible to
determine structure functions and spectra similarly (for particle displacement) (1.13)
to (1.15) in the following form (Golitsyn and Fortus 2020):

D(2)(τ ) = 23
∞∫

0

(1 − cosωt)2E(ω)dω (1.17)

and with the power form of these functions

D(2)(τ ) = A2τ
γ , 2 < γ < 4,

connection is maintained E(2)(ω) = C2/ω
γ+1, and the relationship between the

constants A2 and C2 found in Golitsyn and Fortus (2020):

A2 = �(γ + 1) sin
(−πγ

2

)
C2

π
(
2γ+1 − 23

) . (1.18)

Definitions of Fourier-type transformations such as (1.13) or (1.17) exclude diver-
gences at zero. It should be remembered, however, that power dependencies are
always intermediate asymptotics (Barenblatt and Zeldovich, 1972).
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1.2 Delta-Correlated Stochastic Processes

In nature, most of the processes (for example: turbulence, earthquakes, landslides,
etc.) are random in time and space. The primary basis of randomness is the forceful
effects on the system. The correlation time of these influences is usuallymuch shorter
than the reaction time of the system. For times τ0 << τ , an internal time scale, which
is often also the time of correlation of random forces acting on the system, in a first
approximation their correlation function can be approximated by a delta function (in
probability theory, such approximations are called Markovian)

Ba(τ ) = εδ(τ ), ε = σ 2
a τ0 (1.19)

It should be remembered that the delta function has a dimension inverse of the
dimension of its argument. For the process u (t), the integral of a (t), a randomprocess
with stationary increments, the structure function (1.11) is (see MY75):

Du(τ ) = 2ετ (1.20)

This formulawas first published in 1944 in the first edition of the book “Mechanics
of Continuous Media” by L. D. Landau and E. M. Lifshitz (the history of many of
its rediscoveries is set out in MY75). Turbulence researchers have usually obtained
it for reasons of similarity and dimension when u is the increment of velocity, ε is
the rate of generation/dissipation of the kinetic energy of turbulence per unit mass
of the liquid.

With the delta-shaped correlation function (1.19), according to the formula (1.3),
we calculate the spectral density of the stationary process a (t), which turns out to be
a frequency-independent constant equal to 2ε/π , that is, white noise. According to
(1.13), the structure function (1.20), proportional to time, corresponds to the spectral
density:

Eu(ω) = ε(2/π)ω−2 ≈ εω−2. (1.21)

Below we omit the multipliers 2/π = 0.637 everywhere, since in all real situa-
tions the theoretical multipliers must be compared with the data of specially staged
experiments. For the average square of the process,

x(t) =
∫

u(t)dt

equal to

〈[�x(τ )]2〉

we have a spectrum:
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Ex(ω) = εω−4. (1.22)

This expression can be obtained without a numerical coefficient for reasons of
dimensionality, or from the formula (1.21) for the spectral density of the process
u(τ ) given that the spectrum of the process x (t) for which the equation below exists:

ẋ(t) = u(t).

and associated with the spectrum:

ω2Ex(ω) = Eu(ω), (1.23)

where the multiplier ω2 arises from the quadratic nature of the structure function
(1.11).

For the structure function of displacements x (t), a random process with second-
order random increments, n = 2, the formula (1.13) gives

Dx(τ ) = ετ 3 = 〈
(�x)2

〉 ≡ r2, (1.24)

which is also obtained for reasons of dimensionality.
With formula (1.20) it is instructive to compare Einstein’s formula for the average

square of displacement of a Brownian particle.

〈
x2

〉 = 2nDτ, (1.25)

where n is the dimension of space, D is the diffusion coefficient. It is this identity
of the formulas (1.20) and (1.25) that allowed Obukhov (1959) in the case when
u(τ ) is the velocity field, in the Lagrange description of T *, to call the value ε/2, the
rate of generation/ dissipation of the kinetic energy of turbulence, the coefficient of
diffusion in the space of velocities.

The question arises, what in specific numbersmeans the condition of the smallness
of the times of correlation of the effects τ0 compared to the reaction time of the system
τ. To answer this question, at least in order of magnitude, let’s choose the correlation
function of the stationary random process a (t) in its simplest form:

Ba(τ ) = ε

τ0
exp

(
− τ

τ0

)
, (1.26)

which at τ0 → 0 tends to the δ -function. The correlation function (1.26) corresponds
to Langevin’s stochastic equation (MY75). This equation differs from the equation
u = a by adding linear friction on the right—the term λu, where λ = τ−1

0 . The
frequency spectrum of such a process is described by the formula (1.7) with α =
λ = τ−1

0 .
The structure function of the process u (t) will be:
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Du(t) = ετ0

[
τ

τ0
− 1 + exp

(
− τ

τ0

)]
. (1.27)

With an accuracy of a better than 1% already at τ = 5τ0, you can neglect the
exponential here and get:

Du(τ ) ∼= ε(τ − τ0) (1.28)

and the linear dependence on the constant ετ0 is not difficult to take into account in
further formulas.

The formulas (1.19)–(1.28) are correct in the probabilistic-theoretic sense, i.e., for
infinite ensembles of events or times of observations over time τ, when the number of
events can be taken as the valueN = T/τ0,whereT is the total period of observations.
However, in practice, ensembles are always finite, often the number of events is only
on the order of a few dozen. In the work of GlG10, analytically and by numerical
counting, the validity of these formulas is checked, and it is shown that asymptotically
they work satisfactorily already at N ≥ 10. This concludes the consideration of
continuous processes. Note, in order not to return to this further, that if the correlation
time of the effects of the order or greater than the reaction time of the system, then
the Boltzmann equilibrium of GlG10 is established in it, which is also carried out if
the influx of energy is balanced by its dissipation.

1.3 Moments of Distribution Functions of A. N.
Kolmogorov

All these results are derived from considerations of dimensionality, which, generally
speaking, need amore rigorous justification. Such a justification is given by theworks
of A. N. Kolmogorov of the early 1930s. Their crown is the work of 1934, ANK34,
in which, to describe the evolution of the probability density function, PDF, of the
system p(xi ui, t) the Fokker–Planck equation is used in the form:

∂p

∂t
+ ui

∂p

∂xi
= D

∂2p

∂u2i
(1.29)

which in Soviet literature was called the FPK equation, where K corresponds to
the surname of Andrei Nikolaevich. Here, xi, ui are components of a 6-dimensional
vector. It is obtained by the decomposition of the PDF into a Taylor series by a random
parameter with an accuracy of a second-order term of smallness and is solved with
initial and boundary conditions for the semi-infinite space. At the lower boundary of
space, the values of u are set over time, that is, the accelerations distributed according
to Markov, or δ-correlated in time and space.
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The fundamental solution of the equation (1.29) is of the form (see MY75, and
Appendix to Chap. 1):

p(ui, xi, t) =
( √

3

2πDt

)3

exp

[
−

(
u2i
Dt

− 3uixi
Dt2

+ 3x2i
Dt3

)]
. (1.30)

A. M. Obukhov was the first to analyze this equation. He showed that the coeffi-
cientD = ε/2 (see Lifshitz and Pitaevski 1979) is proportional to the dissipation rate
of the kinetic energy of turbulence ε. Solution (1.30) shows that the desired proba-
bility distribution is normal. This solution has three scales (angle brackets mean the
average for the distribution over the ensemble):

〈
u2i

〉 = εt, (1.31)

〈uixi〉 = εt2 ≡ K, (1.32)

〈
x2i

〉 = εt3 ≡ r2, (1.33)

where the scale (1.32) in dimension is equal to the coefficient of turbulentmixing.
Expressing the time from (1.33) and substituting it in (1.31) and (1.32), we get (1.34)
and (1.35):

〈
u2i

〉 = (εr)2/3 (1.34)

K(r) = ε1/3r4/3. (1.35)

i.e., the Kolmogorov–Obukhov law of 1941 for a structure function with zero (small)
initial conditions and the Richardson–Obukhov law for turbulent mixing (vortex
diffusion). The scales (1.31) and (1.33) are also manifested in the fact that the
substitution of the variables:

ui = ũi(Dt)
1/2

xi = x̃i
(
Dt3

)1/2

(where ~ is the dimensionless symbol), excludes from (1.29) the diffusion
coefficient D, i.e., the description becomes completely self-similar, GlG10.

Time dependencies (1.31)–(1.33) were checked numerically for ensembles of N
randomly moving particles in accordance with the formulation of the problem by A.
N. KolmogorovANK34, GlG10. Figure 1.1 shows that even atN = 10 dependencies
(1.31) and (1.33) begin to be fulfilled, and at N = 100 numerical dependencies are
practically non-existent and are different from the theoretical ones. When there is no
motion in the system, the Eq. (1.28) takes on a simplified Fokker-Plank form for the
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Fig. 1.1 Secondmoments of the probability density function for velocities< u2(t) > and distances
between particles < x2(t) >∼ t3, from GlC10

probability distribution p(t, xi):

∂p

∂t
= D

∂2p

∂x2i
, (1.36)

the solution of which

〈
x2

〉 = 2nDt, (1.37)

where n is the dimension of space (Phillips 1958), which is the average area of the
spot occupied by random movements.

This section with formulas (1.19)–(1.37) in theoretical physics is called diffusion
approximation (Lifshitz and Pitaevski 1979), but in fact, is a general approach to the
consideration of random influences on the system under consideration correlated in
one way or another (MY75).
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1.4 Stochastic Events Flow

A statistical description of the flow of events requires a significant part of what has
already been said since events require continuous preparation for their implementa-
tion. For example, earthquakes occur when the stress reaches a certain critical value
in the crust, depending on the properties of the rock, first of all, and the stress arises
as a result of random influences. Events must be characterized by a certain “size”,
intensity, and energy E, which must be a positively defined quadratic value.

Usually, in practice, histograms of the number of eventsN (E) in the energy range
from E to E + dE for some period of observations T 0 are constructed.

Then the value N (E)dE, normalized by the full number of events during time T 0

will be an empirical estimate of the probability of an event with energy E. Here,
probability N (E) is associated with the frequency of occurrence of an event with
energy E. In reality, usually the sample size is not large enough, and the number of
events in the range from E to E + dE is small and can fluctuate strongly in adjacent
intervals. Therefore, in practice, a cumulative histogram is used:

N (≥ E) =
Emax∫

E

N (E)dE, (1.38)

i.e., the number of events with an energy greater than or equal to E, a value with the
dimension of the reverse time, i.e., frequency. Due to the operation of integration, in
practice—summation, the cumulative distribution is muchmore stable, that is, with a
smaller spread than the differential distribution N (E). The function N (E) obviously
has a dimension inverse of the dimensions of time and its argument and is an empirical
irregular estimate of the probability density for the flow of events characterized by
parameter E, and the cumulative distribution has a frequency dimension, i.e., inverse
time. Usually, if the integral in (1.29) converges well, then with an accuracy of a
multiplier O (1)

N (E) = E−1N (≥ E). (1.39)

With random influences of the “white noise”, or Markovian type, as discussed
above, the increment of energy in the system in question occurs linearly with time
according to (1.20).

Until we normalize the formula type (1.20)

E = ετ (1.40)

for the full period of observations T 0, i.e., we do not proceed to estimates of empirical
probability:

pe(≥ E) = τ(≥ E)/T0 = [N (≥ E)T0]
−1, (1.41)
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that time τ(≥ E), according to §13.9 of Feller’s book (1957), can be considered the
average waiting time of an event with an energy ≥ E.After normalization by T 0 this
value will be an estimate of the dimensionless probability p(≥ E). As a result, in
(1.40) time τ ≡ τ(≥ E), and the inverse of it will be an estimate of the cumulative
frequency

N (≥ E) = [τ(≥ E)]−1.

Without an excursion into the concept of the average waiting time of an event,
characterized by the parameter ≥ E, which is rarely mentioned in many standard
books on probability theory, we would not be able to write down the ratio (1.41).

Now (1.40) with (1.39) can be rewritten as

N (≥ E) = ε/E, N (E) = ε/E2 (1.42)

with precision to the multipliers to be found from observations. The value ε in (1.40)
can be interpreted as the rate of generation of the quantity E both in dimension and
in meaning, considering the right side (1.40) as the first term of the decomposition
into the Taylor series by the time of increment of the quadratic parameter E.

An empirical estimate of the value ε is given by the formulas (1.42):

ε = EN (≥ E) = E2N (E), (1.43)

down to a multiplier of the order of one. As we shall see later, many empirical
frequency-size distributions have a shape close to those of (1.42). This formula and
(1.43) were first published by Golitsyn (2004).

The mean velocity square (1.31) has the dimension of energy per unit mass and
we denote it as E. If we deal with the flux of events with frequency of dimension t−1,
then from (1.41) we may write (1.42) and for events with random arias S, described
by (1.33) denoted by S:

N (> S) =
( ε

S

)1/3
, (1.44)

N (S) = 1

S

( ε

S

)1/3
. (1.45)

In practice the distributions of random values N (≤ A) are called cumulative ones
or histograms and N (A) differential ones. In Sect. 11.3 we shall find the histogram
for lithospheric plates N (≤ S) ∼ S−n, n = −0.33. The similar form has integral
distributions for spiral galaxies, Fig. 11.4.

When the text of this book was in printing stage the first author nearing 90 found
the direct way of obtaining the CR spectrum from (1.42) taking into account the unit
area as s−1 = (

w
E

)2/3
. The final form is the product of G

E which is a unit time and
(w/E)2/3 is a unit area:
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I(≥ E) = G

E

(w
E

)2/3 ∼ E−5/3,

I(E) = dI(E)

dE
∼ E−8/3.

The multiyear measurements by PAMELA (Golitsyn 2004) presented I(E) ∼
E−n, n = 2.67± 0.02. Unfortunately they have not presented data for I(≥ E), there
uncertainties in n would be at least an order of magnitude smaller.

1.5 Special Spectral Exponents and Their Sense

The difference between the spectrum of excitations and “white noise” should lead to
a difference in indicators from one for the structure functions of continuous processes
and for histograms, that is, frequency-intensity distributions. Here wewill briefly and
formally address this issue.

Let the frequency spectrum of the effects be in the form where the β is related to
the index ν in (1.9)

Ea(ω) ∼ ω−β (1.46)

where the cases β > 0 and β < 0 will be discussed separately. The time correlation
function corresponding to this spectrum exists only for β > 0, i.e., the spectrum
growing towards low frequencies. It has the form, MY75:

Ba(τ ) = τ−β�(1 + β) sin
π(1 − β)

2
(1.47)

and at β → 0 tends to δ -function. If the spectrum of the process a(t) is (1.46), then
the spectrum of the process u(τ ) = ∫α(t)dt, α calculation will be of the form:

Eu(ω) ∼ ω−2−β, (1.48)

with a corresponding structure function:

Du(τ ) = 〈
�u2(t)

〉 ∼ τ 1+β, (1.49)

from where acting by analogy with the derivation of formulas (1.42), we obtain:

N (≥ E) = [τ(≥ E)]−1 ∼ E−n, n = (1 + β)−1 (1.50)

Thus, when β > 0, the number of large events increases compared to the case
of “white noise” β = 0. When β > 0, the energy of low-frequency fluctuations
increases with a decrease in frequency, and the correlation increases, which causes
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an increase in the number of large events that manage to form more often than with a
uniform distribution energy impact across the entire spectrum. By analogy with the
theory of electromagnetic radiation in physics of the late XIX century, this situation
can be called an “infrared catastrophe”. In any case, the spectrum at low frequencies
must fall due to natural causes, since infinite energy cannot accumulate there, that
is, i.e., ω < ω0 and how the wave collapses in wind waves (see Chap. 6).

The case of β < 0, i.e. an increase in the spectrum of influences towards high
frequencies, leads to an increase in the indicator n in (1.50) compared to one, i.e. to a
decrease in the number of large events compared to the case of “white noise” β = 0
and to a predominant increase in the number of small events, which is expressed in
an increase in the exponent in the distribution (1.50).

From the point of view of similarity and dimensionality, the presence in the spec-
trum of influences (1.46) of an indicator of the degree of β = 0 means that in the
process under consideration, there is a dimensionless parameter depending on the
frequency and other dimensional quantities, which does not disappear from consid-
eration, no matter how large or small it may be. This is an example of self-similarity
of the second kind according to the terminology of G. I. Barenblatt B02). Of the
possible others, for more common reasons, the difference between the indicator n
and the unit in the empirical cumulative distributions of the frequency-intensity of
events type, it is necessary to mention the insufficient sample size (therefore, confi-
dence intervals for the value of the indicator n should always be estimated), the
presence of geometric factors, as for the statistics of earthquakes in thin plates near
the mid-ocean ridges in contrast to their statistics in faults, that is, the boundaries
of much thicker ones. San Andreas Fault Type Plates in Southern California (see
Chap. 3). Another parameter of the difference is the distribution, where the number
of events is measured not only per unit of time but also per unit area, which itself
may depend on the parameter by which the distribution is sought, as will be seen in
the case of cosmic ray statistics (Chap. 4).

Here we have considered various, practically useful questions of statistics of
temporal random processes. However, in reality, many tasks require knowledge of
the statistics of processes in their spatial manifestation, for example, turbulence,
although, as a rule, we have only a time record of the signal at the point. In the
latter case, the simplest connection between temporal and spatial characteristics for
spatially homogeneous processes is given by the hypothesis ofGI. Taylor on so-called
“frozen” turbulence (see MY75). Formally, this hypothesis uses the relation:

r = Uτ, (1.51)

or in wave representation:

ω = kU , k = 2π/r, ω = 2π/τ, (1.52)

where U is the average flow velocity, e.g., wind in the atmosphere. It is assumed
that the turbulence carried by the wind past the measurement point remains virtually
unchanged during the measurement τ .
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In general, it is necessary to use a dispersion ratio ω = ω(τ), which does not
have to be linear as (1.52). For example, the ratio (1.20) for the inertial turbulence
interval can be compared (again, with an accuracy of a numerical coefficient) to the
dispersion equation:

ω = ε1/3k2/3 (1.53)

Ratios of the dispersion type, as, for example, for waves on the surface of the sea,
in the transition from frequency characteristics to spatial ones, can be considered as
an operation of replacing variables in the distribution of probability or its moments.
Due to the conservation of probability, equality must be fulfilled.

P(x)dx = P(y)dy, y = y(x). (1.54)

Similar relationships can be written for distribution moments, for example, for
spectral densities. In the latter case, a physical interpretation of such an equality is
also possible: due to (1.5), the integral of the spectrum is equal to the variance of the
quantity under study.

Therefore, under the assumption of ergodicity, the magnitude of the variance
should not depend on whether we estimate it using temporal or spatial characteris-
tics, that is, whether the amount of variance is estimated using temporal or spatial
characteristics,

E(ω)dω = E(k)dk. (1.55)

When studying the spatial structure of random fields, the question of the diffusion
of particles in such fields is practically important. As is known, the motion of the
Brownian particle in a random velocity field with a spectrum of “white noise” is
carried out with a constant diffusion coefficient - see (1.25). Formally, the diffusion
coefficient can be defined as (see Chap. 7 for details):

K = 1

2

d

dt

〈
(�x)2

〉 = 1

2

dr2

dt
= r

dr

dt
= ru, (1.56)

or a time derivative of the area. In this spirit, the old, Taylor (1915), definition works.
Consider the general case of the impact spectrum (1.44): Eα(ω) ∼ ω−β , β > 0.

It corresponds to the spectrum of spatial displacements:

Ek(ω) ∼ ω−4−β (1.57)

for which the generalized structure function with second-order stationary increments
(0 < β < 1) will be:

Dx(τ ) ∼ τ 3+β ≡ r2. (1.58)
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From here we express τ = τ(r) and, substituting in (1.56), we get

K ∼ rm,m = 2(2 + β)

3 + β
(1.59)

At β = 0, “white noise”, we have the classical Richardson-Obukhov law (see
“white noise”) (Chap. 6):K ∼ ε1/3r4/3. Diffusion in the field of random wind waves,
depending on their age, has slightly different asymptotics (see Chap. 6, Sect. 6.2)
with indicators from 4/3 to 7/6 depending on the age of the waves. The case of
molecular diffusion, i.e. a constant transfer coefficient, corresponds to β = −2 as
can be seen in (1.58) and (1.59). Let us also mention the so-called flicker noise,
corresponding to the exponent of the degree in the spectrum of influence β = 1.
Note that according to (1.5) such noise will be “white”, that is, constant, but in the
space lnω. Displacement spectrum, according to (1.57), then it would be ω−5. This
form of spectrum was proposed by Philips (1958) for the spectrum of marine surface
waves in the high-frequency region for dimensionality reasons, taking frequency
ω and acceleration gas determining parameters. We will leave its discussion for a
special Chap. 6. Index depending on the mixing coefficient on the spot size r will be
at this is equal to m = 3/2. This issue is discussed in Chap. 7 (Sect. 7.2), where it
will be shown that 1 < m < 3/2.

This concludes the description of the tools we need for the future. A much more
complete set of concepts and methods can be found in the book by Sornette (2003)
with numerous examples from many areas of physics and other natural sciences.

1.6 Some Consequences of the Results of A. N. Kolmogorov
in 1934

Here we will consider some consequences useful for the statistical processing of
results, and moments of distribution functions described in paragraph 1.1.3. Scales
(1.31) and (1.33) can be thought of as temporary structure functions of processes
with zero (or small) initial data. Then the formulas (1.14) and (1.17) make it possible
to determine their spectra, which is done in Sect. 1.3.

Another useful consequence is the construction on their basis of cumulative distri-
butions of N (≥ E) of magnitude E. The latter has a dimension of inverse time, and
then the distributions associated with energy will be:

N (≥ E) ∼ εE−1,

and with the event area:

N (≥ S) ∼ (ε/S)1/3.
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Examples of the last two distributions are given in Chap. 4, for the distributions
of the number of lithospheric plates by area and the galaxies closest to us by mass.

The first of these two formulas is given in the form (1.42), the practical meaning
of which became clear only at the last stage of processing the manuscript of this
book. If we assume that in a particular case, the value of the rate of generation of
the process ε is more or less constant, then EN (≥ E) will be functions inverse of
each other.We have this situation in Chap. 10 when considering damage from floods,
when:

N (≥ Y ) ∼ Y−2/3, and the damage is proportional to the flooded area associated
with the catchment area. For a long time, it remained unclear to the author that the
area of mud fungi on the surface of the seas and oceans formed at some distance
from the mouths of rivers is proportional to their catchment to the degree Sb, where
the degree index for different samples of rivers in California, Morocco, Florida is
close to 2/3 with an accuracy of about 10–20% (see Chap. 10). Most of the results
of this chapter are contained in G12.

In conclusion, we will describe the process of obtaining a solution to equation
(1.30), about which it is written in MY75 that it is known, but no references are
given. The solution below was found by A. A. Lushnikov, and I sincerely thank him
for his permission to reproduce it here.

A number of results can be also obtained by dimensional analysis and it can be
used to check the validity of formulas obtained from probability arguments. First
are histograms N (≥ E), their dimension is reverse time or frequency. The differ-
ential distributions have dimensions (TA)−1, where A is a parameter on which the
distribution is sought (seeked?). Of course, these quantities are related to the second
probability moments (1.31)–(1.33). The first moment 〈u2i (t)〉 = εt = E, where E is
the energy (or any intensity) per unit mass and can be applied for different processes
due to their self-similarity discussed above. So the histogram will be

N (≥ E) = ε

E
, N (E) = ε

E2
.

The distributions (1.42) are knownover a century as Pareto law, Zipf law, for popu-
lation of the cities, avalanches, etc. other empirical laws, but here we describe their
probability nature, see [13] where there many empirical distributions with theoretical
estimates of their power indices.

As (1.42) and strictly speaking to the right side should be applied a non-
dimensional multiplier Cl . If the analyzed process is governed by several factors
which can form a non-dimensional similarity number П, then Cl = f (�) as for
earthquakes, and normally f (�) ∼ � starts with a linear term.

For the processes with random areas the histograms are

N (≥ A) = Ca

( ε

A

)1/3
.
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The illustrations for this are lithospheric plates and spiral galaxies, see 11.3 in
Chap. 11 and differential distributions for the horizontal lengths of clouds and blue
sky voids between the clouds in Fig. 14.2.

The left side of Eq. (1.31) in general case should be understood as an intensity
of the process, and ε as its generation rate. Their product (1.31) and (1.33) being
multiplied by a mass of rotating column will evaluate the total energy of the object
(see Ch. 9). The right side of (1.33) considered as a 3-rd order structure function
for the wind sea waves can immediately produce its frequency spectrum as ω−4 (see
Sect. 6.3).

The important point in these studies is that all three second probability moments
can contain non-dimensional numbers C1,C2,C3 which may depend on non-
dimensional similarity members, П, like the Reynolds number, if the process in
consideration may depend on some additional governing parameters. An analysis of
the value ofП, experimentally or theoretically can obtain the limits of the found result
(see Ch. 3) as intermediate asymptotes [1]. We should recall the very informative
paper by Newman [2] where one can find over 20 power dependencies of various
sorts and mathematical estimates for the possible limits on the power indices.

1.6.1 Application

If the Eq. (1.29) is non-dimentionalised by the substitutions:

x = x̃
(
εt3

)1/2
, u = ũ(εt)1/2

where the sign ~ means a dimensionless quantity, then this equation will not contain
ε, and the non-dimentionalization itself already gives the scales of A. N. Kolmogorov
(see (1.31) and (1.33)).

∂p

∂t
+ ũi

∂p

∂ x̃i
= ∂2p

∂ ũ2i
. (1.60)

We are looking for a self-similar solution in the form of:

ln p = A + ar2 + br · u + cu2, (1.61)

and its substitution into the Eq. (1.60) gives:

Ȧ = ȧr2 + ḃr · u + ċu2 = 6c + b2r2 + 4bcr · u + 4c2u2. (1.62)

Equating the coefficients on the left and right, we get a system of ordinary
differential equations:
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Ȧ = 6c, ȧ = b2, ḃ + 2a = 4cb, ċ + b = 4c2. (1.63)

The solution to this system is:

a = −3/t3, b = 3/t2, c = −1/t, A = −6 ln t. (1.64)

Substituting these solutions into (1.61) and normalizing the probability p per unit
gives the solution in the form of (1.30) and note that in ANK34 the average term of
the exponent in parentheses was omitted, but MY75 gives it correctly.

It is known that equations of the parabolic type have self-similar solutions, and
the method proposed here, previously unknown to the first author, provides a useful
way to find them.
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Chapter 2
Turbulence

2.1 Kolmogorov–Obukhov Turbulence

The 1941 results on small-scale turbulence were the first test of the potential capabil-
ities of ANK34, undertaken by Obukhov (1959). He presented them in July 1958 at
the international symposium in Oxford “Atmospheric Pollution and Turbulent Diffu-
sion.” A lengthy discussion of these ideas can be found in §24.4 of the book MY75.
A short note [1] shows that there are three velocity scales in turbulence:

〈
u2i

〉 = εt ≡ r2

diffusion

〈uixi〉 = εt2

and length (see Chap. 1 paragraph 1.3 here)

〈
x2i

〉 = εt3

Expressing from the last scale the time and substituting it into the first one, we
get:

〈
x2i

〉 = ε
(
r2/ε

)1/3 = (εr)2/3, (2.1)

that there is a structure-function for velocity with zero initial data. To the question
of Batchelor, what is new here in comparison with the results of 1941, obtained
by similarity and dimension theory, Alexander Mikhailovich replied that there is a
lot that is new. However, this was not explained in MY75. This book contains the
answers to the questions asked. The magnitude is:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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ε = d

dt

u2i
2

= 1

2
vφ2

ik = v

2

〈(
∂ui
∂xk

+ ∂uk
∂xi

)2
〉

, (2.2)

where φik is the deformation tensor of the velocity field.
There are many temporary random processes and random events in nature, subor-

dinate to the AHK34. Their cumulative energy distributions over time are described
by area S proportional to

S-1/3, by energy ~ E-1 (see Chap. 1).
Results of ANK34, their interpretation by A. M. Obukhov, and generalization

here in Chap. 1 serve as a probabilistic substantiation of the results obtained earlier
by methods of similarity and dimension theory. In these cases, you should always
remember the conditions of local homogeneity, local isotropy, and intermediate
asymptotics, which should be tested on real experimental data. From similarity and
dimension, one can obtain the shortened dynamic equation of A.N. Kolmogorov,
MY75, the so-called “law – 4/5”:

〈
u3lll(r)

〉 = −4

5
εr

that is valid for Re >> 1, but not the magnitude and sign before εr, which are obtained
with the exact solution of the dynamic problem from the Navier–Stokes equations
for the longitudinal n component of speed. The sign of—is determined by the fact
that the value of ε, the dissipation rate kinetic energy, generated on a large scale and
transferred through the inertial interval of turbulence to dissipation interval:

lv = (
v3/ε

)1/4
.

The dependence of the average longitudinal velocity component (cm/s) on
the distance (cm) between observation points is illustrated in Fig. 2.1, while the
normalized velocity spectrum is shown in Fig. 2.2.

Fig. 2.1. Dependence of the
average longitudinal velocity
component (cm/s) on the
distance (cm) between
observation points.
(Obukhov 1949, G12).



2.2 Passive scalar Turbulence 21

Fig. 2.2. Normalized
velocity spectrum (MY75).

2.2 Passive scalar Turbulence

A passive scalar, such as water vapor or temperature, does not affect the velocity
field but is transported by velocities. Such an admixture obeys the diffusion equation
in as a moving flow, which makes it possible to introduce the concept of generation/
dissipation rate of a quadratic measure of heterogeneity impurity field concentration:

N = d

dt

〈
�2

〉

2
= χ

〈(
∂�

∂xi

)2
〉

, (2.3)

where Θ is the impurity concentration, χ is the diffusion coefficient. This quantity is
a measure of the generation of passive fluctuations of the field Θ. The flow itself in
the inertial interval is characterized by the rate of generation/dissipation of kinetic
energy ε according to (2.2) and has a time scale:

τ = (
r2/ε

)1/3
.

For a passive scalar in a turbulent flow, the same relations as for the velocity field, in
instead of ε there is the quantity Νε-1/3, which was established by Obukhov (1949)
for the temperature structure function:

Dθ (r) = 〈[�(x + r) − �(x)]2〉 = C0Nε−1/3r2/3, (2.4)

where С0 is the numerical coefficient O(1) for the atmosphere, depending primarily
on atmospheric stratification. Its value was determined many times and in different
conditions, since it determines the intensity of fluctuations of wave signals passing
through the medium. Corrsin (1951), without knowing [3] (note that the dimension:

[
Nε−1/3

] = �2L−2/3
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Fig. 2.3. Spectra of
temperature fluctuations in
the surface layer of the
atmosphere (MY75) at day
and night.

i.e., the structure-function determines the variance σΘ2), obtained a formula for the
spectrum of impurity fluctuations [3], equivalent to (2.4):

Eθ (k) = C0Nε−1/3k−5/3, (2.5)

which has been tested a thousand times in various fields of science and technology.
Themost impressive results are frommeasurements of electron concentrationfluc-

tuations in our Galaxy. Amstrong et al. (1981) found that their spectrum agrees with
(2.5) over 12 orders of magnitude of sizes, from 106 to 1018 m! Figure 2.3 presents
the spectrum of temperature fluctuations in the surface layer of the atmosphere.

2.3 Helicity and Spiral Turbulence

Helicity is a hydrodynamic quantity that is preserved in the inertial range, i.e., at
sufficiently large Reynolds numbers. According to the definition by Moffat (1969)
this is the scalar product of the velocity vector and its vortex:

h = ωiui = u · rot u, ωi = εijk
∂uj
∂xk

. (2.6)

The designation h corresponds to the first letter of the word helicity.
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From its definition it follows that in purely two-dimensional flows the helicity is
identically zero, i.e., it can only be present in three-dimensional flows, for example,
in the Ekman boundary layer, where the wind turns with height, approaching its
geostrophic value. In the atmospheric boundary layers, it occurs continuously due to
the rotation of the Earth and friction with the surface.

It is associated with the phenomena of reverse cascade and large-scale restruc-
turing of currents. Helicity plays a significant role in the processes of magnetic
field generation fields in a conducting liquid (Moffat 1978). Therefore, this value is
calculated in mesoscale models for hurricanes and typhoons, polar mesocyclones, jet
streams, thermal convection, etc. A review of such literature can be found in Vazaeva
et al. (2021).

A fairly complete theoretical study of small-scale spiral turbulencewas carried out
by Chkhetiani (2008), and he also initiated numerical modeling of the role of helicity
in atmospheric boundary layers, and then its direct measurements there (Koprov et al.
2005). Although direct consequences for fluctuations in helicity from ANK34 have
not yet been found, the ideas that emerged from the study of ordinary turbulence help
to understand spiral turbulence. Therefore, let us briefly turn to the most important
concepts here.

The dimension of helicity coincides, as can be seen from (2.6), with the dimension
of acceleration, i.e., in the SI system it is m/s2.

Based on modeling and measurements h values are estimated to range from 0.01
m/s2 (rotating thermals), 0.1m/s2 (hurricanes), and 10m/s2 (“dust devils” in deserts).
But the amount of helicity is pseudoscalar, i.e., it can both be generated and damped
Chkhetiani (2008). The note of helicity dissipation, derived from the Navier-Stokes
equations, is equal to:

η = dh

dt
= v(ω · rotω) (2.7)

and has the dimension m/s3.
Helicity has a tensor character. Chkhetiani used the most general form of tensors

of the second and third order, taking into account antisymmetry, and obtained several
fairly general and simple visual results, for example, a dynamic equation for helicity,
similar to Kolmogorov’s “–4/5 law” for the velocity field and Yaglom’s “–4/3 law”
for passive scalar.

To study the fluctuation fields of helicity and their spectra, the velocity and vortex
components were taken at different points separated by a distance r:

h(r) = ui(x)ωi(x + r). (2.8)

This quantity is quadratic and can be considered an analog of the structural func-
tions of a passive scalar. For the dimension of helicity, we take the notation [h] = H.
Then the dimension of the dissipation/generation rate helicity will be [η] = HT–1.
Dimensional considerations, which involve the rate of dissipation of kinetic energy
ε and the distance r, give, under the assumption of helicity passivity:
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Fig. 2.4. Frequency
spectrum of helicity (G12)
(Koprov et al. 2005).

m
/s

2

f, HZ

h(r) = αhηε−1/3r2/3 = αhητ0, (2.9)

where τ0 = (
r2/ε

)1/3
—time scale in the inertial interval (compare with the rule

actions of the fastest reaction in Sect. 11.1).
The quantity (2.9), proportional to r2/3, corresponds to the spatial spectrum k

-5/3. Considering Taylor’s “frozen turbulence” hypothesis f = kU, it is realistic the
measured spectra will be ~ f -5/3. Figure 2.3 represents actually measured helicity
spectra obtained in the surface layer under different conditions of stratification and
for various components ui ωi. It is directly proportional to f −5/3. Since helicity is
determined by the field of motion itself, so wemay say, its topology, then as a passive
scalar it has an energy spectrum of – 5/3 (Fig. 2.4).

2.4 Two-Dimensional Turbulence

Natural processes can differ by 3–4 orders of magnitude on horizontal and
vertical scales, exhibiting features that bear little resemblance to conditions for the
three-dimensional turbulence. In 1967, Professor Victor Starr’s book “Physics of
Phenomena with Negative Viscosity” appeared, which described many-large-scale
phenomena powered by energy from smaller-scale movements: the Gulf Stream, jet
streams in the atmosphere, several astrophysical phenomena on the Sun and in spiral
galaxies.

The possibility of such a direction of energy flows was pointed out back in 1949
by Onsager (1949) and in 1953 by Fjortoft (1953). So, it was more than enough to
start developing a theory of two-dimensional turbulence Corrsin (1951) and Starr
(1968). The main results were obtained by Batchelor (1969), presented by him in
January 1964 at a lecture inMoscow, andKraichnan (1967). Two-dimensional hydro-
dynamics has several specific features: there is no intensification of vortex filaments
due to their stretching, as in the three-dimensional case. The equation for the vortex
field ω(x, y, t) is:
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∂ω(xi, t)

∂t
+ ui(xi, t)∇ω(xi, t) = v�ω(xi, t), (2.10)

where ω—vertical component of the velocity vortex, unique in 2D, i = 1, 2, v—
kinematic viscosity. In the absence of viscosity and incompressibility dω/dt = 0,
i.e., the vortex is retained in the liquid particle. In a statistically homogeneous flow,
the sign of vortex is not defined, so the flow is characterized by the mean square
vorticity—enstrophy  = 〈

ω2
〉
/2. In the presence of viscosity:

d

dt
= −v

〈|∇ω|2〉 ≡ εω, (2.11)

and for average energy:

dE

dt
= −2ν  ≡ −ε, (2.12)

where ε is the average rate of dissipation of kinetic energy. At large Reynolds
numbers, energy transfer fromsmall to largewave numbers is impossible.At the same
time, for enstrophy and its spectrum such a transfer is possible as most simply and
elegantly was shown by Novikov (1978), which is confirmed by numerical models
(see Chap. 26 of the second edition of the book MЯ and review (Mirabel and Monin
1979). Lindborg (1999) derived the dynamic equation for the enstrophy transfer
interval:

Dlll(r) = 1

8
εωr

3, (2.13)

where εω—is the rate of dissipation (in this case, transfer along the spectrum) of
enstrophy and the cube of the distance between observation points. This is an analog
of the “law –4/5” for the third moment of velocity in the three-dimensional case. The
+ sign on the right in (2.13) indicates the presence of a reverse cascade, i.e., energy
transfer from small to large scales in purely two-dimensional flows.

In the presence of kinematic viscosity v and the rate of enstrophy dissipation εω
it is possible to form a microscale of length

lω = (
v3/ε−1

ω

)1/6
. (2.14)

Let us estimate the magnitude scales for the atmosphere. Per unit mass E ≈
300m2/s2 (average wind speed according to Oort 1964 17 m/s),  ≈ 10−10s−2 with
v = 10−5m/s2 and time life of vortices of order 105, with, we get εω ≈ 10−15 s. In
this case, formula (2.5) gives lω ≈ 1 m (note that 101/6 ≈ 1.5). It reminds us that this
is the scale of the drifting snow eddies that each of us saw.

If there is a scale of enstrophy input into the flow, in the atmosphere, and in
the ocean, this is the scale formation of synoptic vortices Lω, then in the interval
lω � l � Lω will act enstrophy transfer. Then, from the dimensional analysis, the
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value of the spectral density kinetic energy will be:

E(k) = Cε2/3ω k−3. (2.15)

Spectra k-3 lead to divergences both at zero and at infinity. Kraichnan (1967), in the
fight against them, used the hypothesis that nonlocal interactions between spectral
components from a certain interval of wave numbers around one are involved in
enstrophy transfer, and proposed a correction to the spectrum (2.6) in the form:

E(k) = Cε2/3k−3[ln(k/k0)]
−1/3, (2.16)

where k0—is the wave number from the enstrophy transfer interval.
In the 1990s, European countries conducted a large aircraft experimentMOZAIC,

where, along with other measurements, registration measurements were taken for
overload vector (Lindborg 1999). In them, for the horizontal velocity components
there was discovered, again after Gage (1979) similar experiments in the USA, the
spectrum k−5/3 for scale interval from 2 to about 500 km, later these results were
reproduced in a high-resolution atmospheric numerical model. For scales of 500–
3000 km, the spectrum becomes steeper and approaches k−3. The European results
also show a logarithmic trace. This is discussed in sufficient detail in the article by
Golitsyn and Fortus (2020).

It is characteristic that the spectrum k−3 in nature was observed not on a medium
and small scale, but, on the contrary, on a large scale. But then it is not two-
dimensional, but geostrophic turbulence, proposed byCharney (1971). In geostrophic
movements, when the Coriolis force term is balanced by the pressure gradient, the
potential vortex remains:

p = (� + 2ω)∇s

ρ

where Ωp up to normalization, it is a component of the absolute vortex, i.e., the sum
of the planet’s own rotation and the hydrodynamic vortex, in the direction of the
“thermodynamic vertical,” that is, the entropy gradient s. Argumentation similar to
Batchelor and Kraichnan allowed (Charney 1971) to obtain the spectrum here as
well k−3. A detailed discussion of these and subsequent results can be found in the
review by Mirabel and Monin (1979).

Laboratory and numerical experiments developed quite intensively. A review of
them up to 2002 can be found in Keller and Goldburg (2002), and for the subsequent
15 years in article by Kellay (2017). However, in real nature, it was not possible
to detect clear traces of two-dimensional turbulence. Moreover, the spectra k−3,
found for scales from 500 to 3000 km in measurements by Lindborg (1999) and in
detailed numerical simulations with high resolution and with energy budget analysis
(Koshyk andHamilton 2001), can be freely interpreted according toCharney’s theory
of geostrophic turbulence. Observed in aircraft measurements spectra k−5/3 on a scale
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of 2–500 km—this is a new discovery of properties of turbulence in stably strati-
fied media, which can be horizontal turbulence with k−5/3. This is well-confirmed
by numerical calculations (Koshyk and Hamilton 2001) and corresponding theoret-
ical arguments (Tseskis 2008). Note that in degenerate two-dimensional turbulence
(Lindborg 2006; Riley and Lindborg 2008) the spectral intervals of enstrophy and
kinetic energy transfer can change places.
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Chapter 3
Earthquakes

3.1 Statistics of earthquakes

Earthquakes, EQs, are among the natural phenomena that bring, along with floods,
hurricanes, etc., a lot of damage annually, although in the whole world less than
hydrometeorological phenomena, simply because they are rarer. EQs refer to the
type of natural phenomena for which the connection with the ANK34 scales is
not directly obvious, although here, as elsewhere, large events are much rarer than
small ones, the degree of their heterogeneity is not the same, depending on external
conditions, for example, on the place of the event. Below we will show that this is a
consequence of the first ANK34 scale. This situation can be traced using the methods
of similarity theory and dimensions. The vastmajority, more than 90%, of strong EQs
occur in certain areas confined to the boundaries of lithospheric plates. Convection
in the mantle is non-uniform in space (and time over millions of years), entraining
the plates, generates stresses at their boundaries. These stresses are relieved during
the EQs by the formation of ruptures in the fragile earth’s crust. At the turn of the
1940s, the law of repeatability of EQs depending on their strength (Boðvarsson et al.
1999; Fix 1972), called the Gutenberg-Richter 1942 law (Law G-R) was empirically
established:

logN (≥ m) = a − b · m, (3.1)

whereN(≥ m) is the cumulative number ofEQs for the studiedperiodwithmagnitude
≥ m, a is a constant depending on the choice of units of measurement and the time
interval, and, from the place of observation, b ≈ 1. The magnitude m is related to
the logarithm of the EQs energy and is estimated from the amplitude of surface or
body seismic waves (Kasahara 1981).

The analysis of seismogramsmakes it possible to estimate the fracture parameters:
length L, rupture area S, development time τ, the average displacement between the
two sides of the fault u, and το calculate seismic moment, a measure of the EQs
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energy in the form (see Kasahara 1981; Kagan 1994):

M = μ · S · u, (3.2)

where μ is the shear modulus of crustal rocks involved in the EQ. Between magni-
tude m and seismic moment, there is an approximate relationship justified by some
theoretical considerations and statistics of observations (Golitsyn 1981).

m = 2/3 · logM − 6, (3.3)

where the value of M is measured in the SI system, i.e., N•m. The value M is the
moment of forces, acting in the system, i.e., it is a tensor (see Kasahara 1981).
According to the dimension of the moment, this equals energy. In terms of the
moment, the G-R law (3.1) is written with the exponent b′ ≈ 2/3. From (3.1) and
hence it follows that

N (≥ M ) ∼ M−2/3 (3.1′)

Kanamori and Anderson (1975) based on a simple cracking model and gap
dynamics, as well as the postulation of scale similarity (scaling), accepted that the
stress drop �σ (or strain drop) in the cortex (during the EQs) is approximately
constant, obtained that the discontinuity area is S ∝ M 2/3. This is true for EQs with
m ≥ 6 (Purcaru and Berkhemer 1982; Geller 1976).

This implies another interpretation of the magnitude (Golitsyn 2001)

m = log(S/So), (3.4)

where So ≈ 100m2 = 0.01 ha = 1 ar, i.e. one weave in common parlance. Thus,
magnitude is a quantity related to the surface, and the seismic moment is bulk tensor
quantity (Kasahara 1981; Kanamori and Anderson 1975) with modulus Mo. It is
clear from this, that indicators (3.1) b and b* further differ by a factor of one and a
half. With a similar circumstance, we will meet more than once (see Sect. 11.2).

Special verification of the variability of the value of �σ on a material of about
200 EQs m ≥ 5 in (Golitsyn 2001) showed that the stress drop is within 30–70 bar
(1 bar = 1atm = 0.1MPa = 105N/m2) with a median value of 4.4 MPa at moment
changes by 5–6 orders of magnitude.

Figure 3.1 presents the results of Golitsyn (2001) of checking relation (3.3) using
the data (Purcaru and Berkhemer 1982). The determination coefficient r2 between
magnitudes calculated from seismograms and estimated by (3.3) is close to 0.8.
Global data analysis catalogs showed that there is a value Mcr ≈ 1.6 · 1020 N•m
near which the magnitude m in (3.1) changes from b ≈ 1 to b∗ ≈ 1.5 (see Okal and
Romanowitz 1994). This circumstance is associated with a rupture of the bottom of
the cortex.

This assertion is supported by the fact that b ≈ 1.5 is also observed for the EQs
near the mid-ocean ridges, where young crust, thin, ~ 1 km near these ridges with
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Fig. 3.1. Relationship
between seismic moment
(volume) and magnitude
(fracture surface) in
earthquakes (Golitsyn 2001).

thickness increasing as distance from them, proportional to the square root of their
age, which characteristic of parabolic processes. The explanation for this change
parameter b, as well as other regularities of the EQs process from the point of view
of mechanics, was given by Grigoryan (1988), Kanamori and Anderson (1975) and
later by Golitsyn (2001).

3.2 Similarity Theory for Earthquakes

An explanation of the EQs from the point of view of the theory of similarity was
given in Golitsyn (1996) with the definition of numerical coefficients by comparison
with seismogram processing data, which was not in Grigoryan (1988). These results
will be reproduced here and then commented on from the point of view of probability
theory by A. N. Kolmogorov 1934.

Material constants are chosen for the defining parameters of the EQ process bark
rocks (Kasahara 1981): shear modulus μ = (3 − 7) · 1010N/m2, rock density ρ ≈
3 · 103kg/m3, and the value of the discharged stress �σ ≈ 4MPa = 4 · 106N/m2.
Given that the properties of the crustal rocks and the value of�σ varywithin relatively
narrow limits, we will assume these quantities to be practically fixed. Value �σ/μ

order 10−4, and this dimensionless similarity parameter will be considered little
changing and further do not consider it. The thickness of the h plate also plays a role.

The root cause and measure of the power of all geodynamic processes is
geothermal heat flux equal to F ≈ 4.5 · 1013 W at an average density of 86 mW/
m2 (Schubert et al. 2001). The data on the EQs (Okal and Romanowitz 1994) show
that the plate thickness h also plays a role. From selected four dimensional parame-
ters—seismic moment, dip bark stress at rupture �σ , geothermal flow F, and plate
thickness h—it is possible to make scales of length and time (Grigoryan 1988).

L = (M /�σ)1/3, (3.5)

T = M /F, (3.6)
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characterizing individual EQ. The magnitudes of the measured EQs vary from the
strong in Chile in July 1960 with m = 9.5 occurring every many centuries or less
often, up to m = –1 on the most dense and sensitive in the world in 1999 Icelandic
measuring network Bodvarson et al. 1999). The seismic moment (3.3) then changes
to 16 orders.

Of the four quantities selected above with three independent dimensions (mass,
length, and time) one dimensionless criterion can be formed

� = L/h = M 1/3/
(
�σ 1/3 · h) (3.7)

which we will consider as the main similarity criterion for EQs. At M = Mcr =
1.6 · 1020N · m (see above), �σ = 4 · 106N/m2, F ≈ 4.5 · 1013W(

kgm2/s3
)
and

h ≈ 30km = 3 · 104m (globe-average crustal thickness), we obtain � = 1.07. This
is the value of � ≈ 1 that separates the regions of the EQs spectrum, i.e., the G-R
law, for the vast majority of EQs with b ≈ 1 at m ≤ 7.5 from the region of the
spectrum with a steeper drop, where b∗ ≈ 1.5.

For dimensional reasons (since the cumulative number of events has a dimension
of inverse time, i.e., frequency) can be written:

N (≥ M ) = (F/M ) · f (�), (3.8)

where the left side is the number of events with moment≥ M for a certain interval of
time and f—is a function of the similarity criterion, which should be determined from
observations. The works above present data on the global catalogs of ΕQ depending
on the moment M for 828 events in 1977–1993, including those near mid-ocean
ridges, Geller (1976). There, due to the small thickness of the crust for the values
М within 1017 − 1020 N•m value � ≥ 1. At the same time 5.5 ≤ m ≤ 7.5. Value
b = 1.05 in the G-R law according to these data, i.e., b ≈ 1, and thenN (M ) ∼ M−1,
and the function � → const = 0.35 (see Golitsyn 2001 and G12).

For values of the similarity parameter � < 1, the function f (�) can be
expanded into a Taylor series, and it must begin with a linear term (no excitation-no
EQs):f (P) = c1� = c1M 1/3�σ−1/3h−1.

The number of EQs with m < 7.5, which in the continental bark hundreds and
thousands per year, has c1 = 0.35. The definition of the desired coefficient gives
c1 ≈ 0.34 ± 0.02. The value of the constant coefficient in both cases at � ≈ 1
converges to 0.35 both for b∗ ≈ 1 and b ≈ 2/3. Note that for 5 < m < 7.5 in
(Smirnov and Ispolinova 1995), has obtained b = 0.65 ± 0.02. For the rarely used
differential form of the G-R law for � < 1 we will have

N (M ) = [d[N (≥ M )]/dM ] ∝ M−5/3 (3.8′)

Here theKolmogorovObukhov turbulence spectrum involuntarily recalls: The nature
of the thirds here is purely geometric, and the game is between the magnitude of the
seismic momentM, which is a measure of the energy of the EQs, and the volumetric
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elastic energy density of deformation, allowed by the stress jump Δσ, which gives
the length scale (3.6), see Sect. 11.2 for details.

In G12, data are given for the fracture length L, its area S, and the time of devel-
opment of the EQs along with the magnitudes and estimates Δσ, of the stress drop
at EQ. This makes it possible to estimate numerical coefficients for length scales L,
area S = L2, and time of EQs development.

τ = L · (ρ/μ)1/2, (3.9)

where (μ/ρ)1/2 = c1—is the scale of the propagation velocity of volumetric and
surface seismic waves. As a result, we have for EQs with number i:

Li = 2.3 · L = 2.3 · (Mi/�σ)1/3; Si = 0.34 · L2 = 0.34 · (Mi/�σ)2/3;
τ = 1.4 · L/c1 = 1.4 · (Mi/�σ)1/3 · (ρ/μ)1/2,

and the displacement size of adjacent blocks along the discontinuity is determined
from (3.2) as

u = 0.54 · (M /Sμ) = 0.54 · M 1/3 · �σ 1/3 · μ−1, (3.10)

whence even forEQs1960 inChile this shift is estimated to be about 20m.The presen-
tation of this paragraph follows, mainly, the works of the author (Golitsyn 2001) with
some recalculation of the numerical coefficients obtained there, as described in G12.
There is also a description of the nature of the so-called induced EQs (see detailed
article Volant andGrasso 1994). After the creation of large reservoirs, and production
in large volumes of oil and gas, a series of small EZs are observed with magnitudes
m ≤ 4, i.e., with seismic moments M ≤ 1015N.m. For the above reasons, EQs in
the cortex the previously established isostatic equilibrium is disturbed, and stresses
arise due to an increase in pressure or the appearance of voids that are removed by
ruptured rocks, i.e., by earthquakes.

3.3 Induced Earthquakes

The statistics of such events are satisfactorily described by the Gutenberg law—
Richter, and the numerical coefficients in this statistics are close to those for natural
EQ (Nikolaev and Galkin 1994). The driving force, i.e., the source of energy for
forced EQs, is the change with time of the vertical gradient of the internal pressure
in the system—the values of dp/dz. This gradient at equilibrium is:

dp/dz = −ρ · g, (3.11)



34 3 Earthquakes

where g is the gravitational acceleration. The change in this value with time, which
has dimensionMT−2 L−2, leads to violation of isostasy, i.e., to the appearance of new
and changing old stresses. This value replaces in the previous formulas geothermal
flow F. Several such induced EQs are described in the collection (Nikolaev and
Galkin 1994).

In Nikolaev and Galkin (1994) and G12, data on the statistics of not very large
tsunami waves are also given at the posts of the Soviet Geophysical Service in the
Far East. In the height range of waves from centimeters to a meter, the cumulative
frequency of events turns out to be inversely proportional to the height of the waves,
i.e., their energy. These waves are excited submarine EQs, most of which occur near
mid-ocean ridges where the earth’s crust is thin. For such STs, as we noted above,
in the G-R law the value b ≈ 1, which follows from (3.8).

What are the connections of the G-R law with the results of ANK34, interpreted
as a structure function with zero initial conditions and frequency spectrum? Let’s
remember first the Kolmogorov scale< u2 >= εt, formula (1.31) for energy growth
per unit masses for continuous processes. For discrete processes numbered index i,
we should expect< u2i >= ε · ti, whence for cumulative distributions with frequency
dimension 1/ti ∼ ε/ < u2i > or in the case of EQ moment M, energy measure

N (≥ M )] ≈ c · εg/M , (3.12)

where εg is the elastic energy generation rate per unit mass associated with the
geothermal flow-numerical coefficient. On a logarithmic scale, this is Gutenberg-
Richter’s law. For large EQ, as noted above, the coefficient c ≈ 0.35 and is close
to the constant value for large values of the similarity parameter Π. For its small
c = c(�) is also close to 0.35 and is a linear function of Π as the first expansion
term in the Taylor series.

Thus, the ANK34 theory immediately explains the G-R law for strong ΕQ, i.e.,
similarity parameter � 
 1, and the use of methods of the theory of similarity and
dimension at � � 1, when the details of the internal processes of earthquakes are
considered, explains more frequent events for smaller EQs. In both cases, predicted
the correct exponents in the Gutenberg-Richter power law (3.1) for magnitudes are:
b* ≈ 1.5 and b ≈ 1, respectively, for strong and weaker events, i.e., for both asymp-
totic of the similarity parameter � 
 1 and � � 1. A sufficiently detailed descrip-
tion of EQs in the process of evolution of their knowledge by the author can be found
in (Golitsyn 2001), written when the author has not yet seen a close connection with
the laws of the ANK34, he simply forgot about them, although many years before
that he was the scientific editor of the book MV 75, where this law of the ANK34
discussed in connectionwith turbulence. The title of his work is characteristic: “Place
Gutenberg-Richter law among other statistical laws of nature”. Thus, the G-R law is
the cumulative distribution of the number of EQs events (see Sect. 1.3).

Another unexpected manifestation of the connection with ANK34 gives a spec-
trum of seismic noise, a wave manifestation of processes associated with random
displacements of rocks on the earth’s crust. This spectrum from Fix (1972) is shown
in Fig. 3.2 in the interval of periods recorded fluctuations from 0.1 to 2560 s.
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Fig. 3.2. Spectrum of
microseisms in the interval
of periods from 0.1 to 2400,
Fix (1972) seconds.
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It has two distinct power sections, both are proportional to the oscillation period
T as T 4, i.e., the frequency of the amplitude spectral density changes as f −4. The first
plot for periods 1–10 s, and the second from 100 to 2400 s. The nature of the first site
was described in 1950 by Longuet-Higgins (1950), who noted that these are periods
of powerful wind waves when they break on the cliffs. However, in the middle XX
century, spectral methods were rarely used in the study of natural phenomena and
there was no idea about the frequency spectrum of sea waves (see Chap. 6).

The spectra ∼ ω4 = [f (2π)]−4 were theoretically obtained only in the 1960s.
Figure 3.3 is a perfect illustration of signal flow from the collapse of sea waves
through the earth’s crust, where microseisms are caused. This is how the second
invariant of A. N. Kolmogorov manifests itself in nature (1.33). This shows that
wave excitation (and microseism) has a Markovian character, i.e., its spectrum is
white noise. The same nature and excitation of seismic minute range, up to half an
hour, as shown in Fig. 3.3. What exactly excites micro-oscillations in this range is
still unclear. Probably here there are many uncorrelated causes, such as they have
the Markovian nature which leads to the spectrum f −4 ∼ T 4, according to (1.33) as
was assumed in ANK.
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Fig. 3.3. Dependence of the
cumulative number of stellar
flares on their energy from
G12.

3.4 Acoustic noise of stressed crystals

The work (Miguel et al. 2001) presents the measurement data of acoustic noise at
viscoplastic deformation (creep) of crystalline materials at constant loading. It is
known that the creep is explained by the movement of a large number of dislocations
in the crystal lattice interacting with each other friend. In the experiments described,
acoustic pulses are produced by an ice crystal that is compressed along one direction.
Dislocations in the lattice under the influence of compression form a slowly changing
configuration in which in a time-intermittent manner, rapid structural changes occur
in a three-dimensional field of dislocations. These rapid changes are accompanied
by radiation sound pulses of different intensity (energy E).

The measurements showed that the probability density distribution function of
the number

pulses depending on their energy have a power-law form:

N (E) ∝ E−n, n = 1.6 (3.13)

A numerical dynamic model was built for a crystal, which describes the rear-
rangement of its dislocation structure during creep. This model is for the same N(E)
also gave a power law, but the exponent turned out to be equal to n= 1.8. The authors
considered a satisfactory agreement between the results of laboratory and numerical
experiments, although a decrease in the number of pulses low energy compared to
measurements could be caused by insufficient spatial resolution of the numerical
model. Due to the proximity of this research to the problems of the destruction of
materials, in the end, to the mechanics of earthquakes, we will try to look at the
results of this work from the point of view of theories of similarity and dimension.

As external parameters, we have the stress σwith the dimensionML−1T−2, energy
per unit volume (force per unit area), characteristic sample size h, and dynamic
viscosity included in the equation of motion for dislocations. integrable numerically,
[n] = ML−1T−1, where M and T are the dimensions of the mass and time, η =
ρv, where v is the kinematic viscosity multiplied by the density substances ρ. The
energy of the sound pulse E and their number in the kHz range in dependence on
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energy N (E), [N (E)] = T−1 · E−1. In this equality on the right, the quantity E has
the meaning of the dimension of energy. In the TEL system, the stress dimension
[σ ] = E · L−3 as pressure.

The given 4 quantities form a dimensionless similarity criterion, which we choose
in the form:

�1 = (σ · ρ)1/2 · h · η−1 = ud · h · v−1, ud = (σ/ρ)1/2, (3.14)

Value (σ/ρ)1/2 has the dimension of speed, and it can be considered which deter-
mines the speed of dislocation movement. Then our similarity parameter will make
sense of the Reynolds number for the motion of dislocations. Π1 value is fixed
for a specific sample, and therefore the function C(�1) is simply a dimensionless
multiplier.

The measured value E and the set values σ and v enable uniquely organize the
value with the dimension of the distribution function:

N (E) = C(�1) · σ 2/3 · v · E−5/3 (3.15)

The exponent − 5/3 is 1/15 higher than according to laboratory data, and exper-
iments, and 2/15 lower than in their numerical score. This agreement is somewhat
better than at the authors themselves. Note that the exponent n= 5/3 is a consequence
of ANK34, see Chap. 1.

The cumulative distribution of the number of acoustic pulses depending on their
energy has the frequency dimension:

N (≥ E) =
∞∫

E

N (E) · dE ∝ E · N (E) = (σ/E)2/3v (3.16)

in form and meaning it turns out to be similar to the Gutenberg-Richter law (3.8′) in
seismic moment M for earthquakes with magnitude m < 7.5:

N (≥ M ) = 0.35F · M−2/3

(�σ)1/3 · h , (3.8′)

where N(≥ M) is the number of earthquakes, EQs, 0.35 obtained from their global
catalog, F=4.5•1013 W—total geothermal flow, �σ ∼ 4MPa/m2, discharged at
EQ stress, a quantity that weakly depends on the EQs force, h is the thickness of
the fragile earth crust, taken on average equal to 30 km, M = μ· < u > ·S is
the seismic moment, where μ is Young’s modulus, <u> is the average displacement
of neighboring blocks along the discontinuity at the EQ, S is the break area. Note
that in (3.16) the quantity (σ/Ε)2/3 has the dimension reciprocal area, and v is the
kinematic viscosity, a given value. The same formula (3.8′) can also be brought
into the form, where the effective viscosity will be v = M−1/3(�σ)−2/3F and
S = (M /�σ)1/3 · h ≡ l · h area.
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The analogy is not entirely complete, as for the EQs, the effective viscosity
depends on both the geothermal flow and seismicmoment. Here the quantity l has the
dimension of length and is the rupture length scale at EQs. Thus, the quantitative and
physical analogy of acoustic emission of pulses of a loaded crystal and the process
earthquakes are quite close to each other.

3.5 Starquakes

The first author has long heard about solar seismology, the manifestation of oscilla-
tions, registered in the photosphere of the Sun to obtain information about the internal
structure of our luminary, about starquakes. At the end of 1996, an article appeared on
the statistics of gamma-ray bursts at an object with coordinates SGR 1806-20. This
statistics has a cumulative distribution for about a hundred events power characters
with exponent n = − 0.66. Sequential waiting times events, as well as EQs, have a
log-normal distribution, a strong correlation between the waiting times of successive
events, i.e., the trend to their groupings in time, and the lack of correlation between
the intensity events and their waiting times. This work attracted the attention of
V. I. Keilis-Borok, who used his experience in forecasting EQs, and successfully
applied this methodology for forecasting gamma-ray flares on SGR 1806-20 (private
communication by V.I.K.-B., April 2001).

I spent my summer 1997 vacation at the Institute for Astrophysics of the Max
Planck Society near Munich. Several of my lectures on turbulence and convection
justifiedmymonthly stay. I entered the essence of the subject, the result of which was
my article (Golitsyn 1998). The data themselves appeared bymonitoring compliance
with the International Treaty for banning nuclear tests on land, underwater, and in
outer space, which concluded in 1963.

The objects under consideration are neutron stars with a radius of 10 km, detailed
references in the paper (Golitsyn 1998). Their internal magnetic field reaches 1015

Gauss and its changes feed all processes on similar objects, magnetars. These are
supernova remnants a special class of stars called plerions. Such objects are very rare
in our Galaxy, and/or their lifetimes are short at this stage. Currently, there are 9 such
objects (Wikipedia 2011) out of the total number of stars 4·1011, and supernovae
explode 2–3 times in 100 years (see Chap. 4).

The most powerful explosion at the object in question was recorded on 12/27/
2004. The flare lasted 100–200 ms and was registered on the terrestrial surface
and satellites. Its power is estimated at 1.5•1039 J, which is 3–4 orders of magnitude
smaller than supernova explosions (see Chap. 4). In Golitsyn (1998), data onmaterial
parameters of magnetars, propagation velocities of ruptures in their crust. If such
explosions use take the same numerical data of discontinuities as for the EQs, then
the discontinuity length will be of the order 100 km, i.e., one hemisphere of the
object will be completely separated from the other and shifted by tens of meters,
G12, Sect. 6.9 in it.
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We see because of this chapter that both EQs and ZVT processes appear with the
same general rules.
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Chapter 4
Cosmic Rays’ Spectra

4.1 Cosmic Ray Spectrum

It was this topic, above all others, that attracted my attention to the statistics of
natural phenomena in the first half of 1990. By that time, the energies of the rays
were already measured in more than ten orders of magnitude and their spectrum was
the number of particles measured per unit area per unit time, and even coming from
a unit solid angle of space. Such a spectrum has a power-law form and is shown
in Fig. 4.1. These are mainly galactic cosmic rays. Cosmic rays with energy less
than 1GeV = 109eV are created mainly in the solar corona. High energy rays have
galactic and extragalactic origin. The main source of energy for them is supernova
explosions. The most complete description of the processes associated with cosmic
rays can be found in the book “Astrophysics of Cosmic Rays,” published in 1990
in Russian and English edited by Ginzburg (1990), which has remained virtually
unchanged since then.

The ideas about the mechanisms of acceleration of CR particles are based on E.
Fermi in 1949 about acceleration onmagnetic field inhomogeneities, nowunderstood
as fronts of collisionless shock waves, shock waves, arising in interstellar gas during
supernova explosions. This general idea received quantitative formalization in the
recent works of Malkov and Diamond (2001). In our Galaxy, the Milky Way, with
a population of 4·1011 stars and ages of order 1010 years, such explosions occur in
random places two to three times a century. Therefore, the shock waves are also
arbitrary in space, time, and in the directions of propagation and acceleration of CR
particles, i.e., it is a random process with uncorrelated influences in the exact sense,
i.e. Markovian.

The disk of our Galaxy has a thickness of the order of 200 pc, parsec, and a radius
of 15 kpc, 1 pc = 3.26 light years ≈ 3·1016 m, so its volume is about 1061 m3. With
such a geometry of the Galaxy and such a rate of formation of supernovae within
it, shock waves of the order of a thousand explosions must simultaneously exist if
shock waves propagate at the speed of light. This is clearly an estimate from below,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 4.1. Integral spectrum
of cosmic rays (Wikipedia)

since their speed is an order of magnitude lower, which significantly increases the
number of shockwaves and objects for CR acceleration. Frombalance considerations
(Ginzburg 1990), the volumetric energy density of CR particles is known, depending
on their number and their energies:

wo ≈ 0.5eV/cm3 ≈ 10−13 J/m3 (4.1)

Thus, the total CR energy is of the order of W ≈ 1048 J. The explosion energy
of an individual supernova is of the order of 1042 − 1043 J, i.e., on average about
3 · 1042 J. With two to three explosions per century, this gives an energy production
capacity of G = 2 · 1033W. This power is dissipated by photons, used to generate
turbulent and other movements of interstellar gas, to maintain the galactic magnetic
field, and to cosmic rays. The particles do not immediately leave the Galaxy, since
they are twisted by a magnetic field with a strength ofH = 5 ·10−6 Gauss. Its energy
density H 2/8π ≈ 10−13J/m3, the same as for CR.

The description of CR uses the integral energy spectrum (in Sect. 1.1 called by
then cumulative):

I(≥ E) =
∞∫

E

I(E)dE, (4.2)
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where differential spectrum I(E) is the number of particles with energy in the interval
E ± dE, measured per unit area per unit time, i.e., per 1 m2 per 1 second. Obviously,
these units of measurement are not comparable to galactic scales.

Both spectra are associated with the energy distribution function of the number
of particles, i.e., their energy concentrations:

n(≥ E) =
∞∫

E

n(E)dE = 4π

c

∞∫

E

I(E)dE = 4π

c
I(≥ E), (4.3)

where the particles are considered ultra-relativistic. The empirical spectrum of CR
is approximated by two power-law sections (where ΓƺΒ stands for GeV)

(4.4)

(where ΓƺΒ stands for GeV)
The presence of a break in the spectrum near 3 · 1015eV, called the knee, is

explained by the fact that the magnetic field no longer begins to hold all CR particles,
since their Larmor radius becomes comparable to the thickness of the galactic disk.
Particles with an energy of E > 3 · 109 GeV are practically not observed; they have
so far been recorded in isolated cases. The relatively small rise in the spectrum at the
very end is called the ankle, not yet explained. In the years, 2008–2014, European and
Russian scientists carried out extensive and carefully prepared program “PAMELA”
(Karelin et al. 2014). CR spectra were measured in a range up to the knee on our
satellite Resource 5. They gave I(E) ∼ E−n, where n = 2.67 ± 0.02, i.e., for the
integral spectrum n = 1.67± 0.02 and probably here the spread is smaller, because,
according to (4.2) and our Sect. 1.1, the cumulative spectra are always smoother than
differential ones.

However, long before these studies, the energy spectrum of cosmic rays was
determined theoretically (Golitsyn 1997, 2005) and is very close to its empirical
generalizations (4.4). First, this was done for the first section of the spectrum up
to the knee, and then for the second section up to the ankle. It is obvious that the
CR energy density is related to their concentration, i.e., it has a dimension inversely
proportional to the cube of the distance between particles. Let us determine the CR
spectrum using the method of dimensional theory.

For the system of measurement units, we choose time T, area S, and energy E
(instead of mass multiplied by the square of velocity (Golitsyn 2008). To determine
the integral spectrum with dimensions per unit area and unit time:

I(≥ E) = S−1T−1, [w0] = ES−3/2, [G] = ET−1, [E] = E.
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From here it is immediately clear that the spectrum must be proportional to the
generation rate G, then w2/3

o , and the dependence is E−5/3 provides the required
dimension of the integral spectrum. Less formally: the valueG/E gives the dimension
of frequency, i.e., reciprocal time,

during which the process of CR acceleration on the shock wave blasts, and the
unit area gives (w0/E)2/3, since this value is proportional to the number of particles
per unit volume, i.e., their concentrations with dimension L−3. Both quantities are
random and independent, and their product gives the integral CR spectrum. Note that
the dimension area is 2/3 of the volume dimension. Differential spectrum from here
proportionalE−8/3. . The coincidencewith themeasurement data (Karelin et al. 2014)
is surprising; one can it couldn’t be better to say if you remember that 0.67 ≈ 2/3.
Eventually:

I(≥ E) = a1
G

E

(w0

E

)2/3 ∝ E−5/3, (4.5)

I(E) = 2

3
a1G

(w0

E

)2/3
E−2 ∝ E−8/3, (4.6)

where the numerical coefficient α1 turns out to be of the order of 10-37. The so small
value results from the discrepancy between our standard units of measurement and
galactic sizes and scales. However, if we take per unit area thickness of the galactic
disk 200pc ≈ 6 · 1018m, then such a unit of area will already be ∼ 4 · 1037m2.
How can one not to recall Einstein’s statement in 1911, quoted in Chap. 8 of BPW,
that in the correct formulas obtained by dimensional considerations, the numerical
coefficients should not be very small, nor very large, i.e. O(1)!

The spectrumafter the knee is determined byCRparticlesmoving into ever greater
degrees from the Galaxy since the magnetic field no longer holds them. Next, the
system of inequalities leads along this path:

n(≥ E) =
∞∫

E

n(E)dE =
∞∫

E

E

E
n(E)dE <

1

E

∞∫

E

En(E)dE = w(≥ E)

E
. (4.7)

Cumulative distribution function n(≥ E)we know from relation (4.3), connecting
it with the integral spectrum up to the knee, to estimate the density of the number of
particles n(≥ E) and their energies near the knee, we use inequality (4.7) between
its first and last members. Knowing the spectrum according to (4.4) and (4.7) and
taking (4.3) into account gives (Golitsyn 2005)

I(≥ E) = c2c
−2/3G5/3w4/9

0 E−19/9 ∝ E−19/9; (4.8)
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the exponent in this interval turns out to be equal to1 19/9 = 2 + 1/9, , and from
observations (4.4) it is estimated as 2.1 = 2 + 1/10!

What is the connection with Kolmogorov’s laws of 1934? The equation of motion
of particles is dp/dt = f , the derivative of the impulse concerning time is equal to
the acting force, i.e., acceleration. These forces act on random shock waves, i.e.,
they exactly correspond to the conditions of AHK34. The integral spectrum I(≥ E)

is inversely proportional to time, as for all cumulative distributions (see Sect. 1.2).
However, due to experimental methods for determining this spectrum, it also depends
on the unit of area onwhichmeasurements are taken. Such an area is itself determined
from balance considerations, giving the volumetric energy density w0 divided by
the energy E, which estimates the volumetric concentration of particles N with a
dimension of L−3, where L—length. Therefore, the value (w0/E)2/3 estimates the
area. Thus, the way the spectrum is determined separates it from several other natural
processes, such as earthquakes. It was this circumstance that led the authors of the
book [1] towrite that somenewphysicsmay be needed to determine theCR spectrum.
We see that novelty arises only from the methodological non-standardization of the
concept of the CR spectrum, which requires the use of energy balance considerations
to estimate its spatial density.

Note that when using similarity and dimension methods, it is convenient, for
example, here, to use energy instead of mass as a unit of measurement [6].

4.2 Nowcasting Extreme Cosmic Ray Events

The development of a model for predicting extreme CR events, which can potentially
cause significant issues, is crucial. The main goals of this model include:

(a) the ability to forecast extreme CR events promptly to prevent or mitigate the
impact on telecommunication systems.

(b) estimating the duration and intensity of these CR events based on atmospheric
conditions.

Thismodel will aid in enhancing strategies to prevent, prepare for, andmanage the
consequences of extreme CR events. Varotsos et al. (2023) utilized daily measure-
ments of cosmic rays intensity (CRI) from the neutron monitor station in Athens,
Greece, from January 1, 2010, to January 14, 2022 (Fig. 4.2a). The station, known
as Athens Neutron Monitoring Station (A.Ne.Mo.S), is located at 37.97°N, 23.78°E,
with an altitude of 260 meters above sea level and an effective vertical cutoff
rigidity of 8.53 GV (Mavromichalaki 2010). This station has been operational since
November 2010 and is managed by the Faculty of Physics at the National and

1 The first author recalls the late autumn of 1945, the result of the football games in UK of the then
USSR champion Dynamo—19:9. There were 4 matches: Chelsea 3:3, Arsenal 4:3, Cardiff City
10:1, Glasgow Rangers 2:2. The whole country was incredibly excited and proud of this event, the
first joyful one after the war.
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Fig. 4.2 a Daily measurements of CRI [in counts/s] during the period 1/1/2010 to 14/1/2022
obtained at A.Ne.Mo.S. b Semi-logarithmic plot of the cumulative number (F) of the CRI values
greater than or equal to X versus X (gray circles). The dashed black line is the least-squares fit
of the GR-scaling

(
log F = 65.6 − 1.11 · XwithR2 = 0.99

)
, , while the dashed red line is the

upper-truncated fit derived from Eq. (2) with Xmax = 57.84

Kapodistrian University of Athens. Additionally, Varotsos et al. (2023) incorpo-
rated cosmic flux data and particle total energy data from the Cosmic Rays Database
(CRDB) to further enhance their analysis. The CRDB utilizes various types of exper-
iments and techniques to describe the composition and CR spectrum (Maurin et al.
2014).

Initially, the analysis indicated that the daily CRI values from 1 January 2010
to 14 January 2022 did not follow a Gaussian distribution, as determined by the
Kolmogorov-Smirnov (KS), chi-square, and Anderson-Darling tests at a 95% confi-
dence level. To identify the appropriate distribution for this dataset, we calculated
the cumulative number (F) of daily CRI values that were greater than or equal to
a specific X value of CRI. Subsequently, we plotted the logarithm of F against X
(Fig. 4.2b).

Upon conducting regression analysis, we discovered a statistically significant
linear relationship between logF and X for high CRI values exceeding 55.86. This
value was chosen to achieve the best linear fit:

logF = d + m · X . (4.9)

The estimated values of R2 = .99(m ≥ −1.11 and d = 65.6) were found to be
statistically significant based on the F-test (t-test) at a 95% confidence level. Conse-
quently, it appeared that high CRI values followed a semi-logarithmic distribution
similar to the Gutenberg-Richter (GR) law.

However, Fig. 4.2b indicated that the GR scaling accurately described CRI values
only up to magnitude 57.42, beyond which a rollover occurred. To address this, we
applied an upper-truncated GR fit to the data with X ≥ 57.42, utilizing a model
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proposed by Burroughs and Tebbens (2002).

F ′ = 10d · (
10mX − 10mXmax

)
(4.10)

The values of m ≥ −1.11, d = 65.6 were derived from Equation (4.9), and
Xmax = 57.86 was selected to ensure a more precise approach.

Subsequently, we tested the reliability of the aforementionedGR-fit by employing
the KS test. The KS-statistic D = .04 confirmed the semi-logarithmic distribution
for high CRI values greater than 56.039 at a 95% confidence level.

Further information on our new research results will be presented in Chap. 26.
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Chapter 5
Turbulence and Rotation

5.1 Mesoscale Turbulence

Here we look at mechanical turbulence in rotating systems and show its connec-
tion with the laws of Kolmogorov of 1934. The rotation that introduces noticeable
differences in the turbulence described by Kolmogorov and Obukhov in 1941. Labo-
ratory measurements appeared at the very beginning of our century (Baroud et al.
2002, 2003), which confirmed the main conclusions of purely theoretical research
and discovered new statistical patterns noticed before that but remained ununder-
stood. A systematic review of the state of the subject with some new results was
made by Golitsyn (2007), and further development of this direction through numer-
ical modeling was carried out by Gledzer (2008) with an analysis of the limits of
applicability of the results obtained in measurements.

Rotation with angular velocityΩ sets the time scale in the system. Basic the quan-
tity that excites turbulence remains the generation/dissipation rate kinetic energy of
velocityfluctuations ε. This quantity canbe excited eithermechanically or by a system
of sources and sinks in the vessel used. Dimensional analysis gives scales of length,
acceleration, speed, fluctuations pressure, vortex (turbulent) mixing coefficient:

L� = (
ε/�3)1/2, (5.1)

a� = (ε �)1/2, (5.2)

u� = (ε/�)1/2, (5.3)

δP = ρε/�, (5.4)

K� = u�L� = ε/�2. (5.5)
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The velocity scale was indicated in Golitsyn (1980), the length scale in Browand
et al. (1982), and the mixing coefficient in Baroud et al. (2002, 2003) and Boubnov
and Golitsyn (1990), although the theoretical results were indicated in Zhou (1995)
and Canuto and Dubovikov (1997) without comparison with measurement data. The
scales of accelerations and pressure fluctuations were introduced in Golitsyn (2007).
Experiments on convection in a rotating fluid give for horizontal movements speed
estimation (Boubnov and Golitsyn, 1990):

u� = 2.4(ε/�)1/2

(or 1.7, if you take Coriolis parameter 2Ω). Length scales, speed, and vortex
coefficient mixing have already been given by us in paragraph 1.3, but at a fixed
time, specified here by the inverse rotation frequency Ω.

When considering convection, the rate of generation of kinetic energy in stationary
is equal to the buoyancy flux density (see Chap. 11). Note also that in the 1941 theory,
there is a single linear scale—the microscale of dissipation:

lv = v3/4ε−1/4, (5.6)

which is a consequence of the appearance of a new dimensional parameter ν, the
kinematic viscosity of the medium. In this case, we have a new control parameter—
the speed of angular rotation of the system Ω, which fixes random variables near
their average values.

If kinematic viscosity and external linear scale L0 are significant, then you can
enter the usual Reynolds number:

Re = u�L0
v

(5.7)

and rotational Reynolds number:

Re� = u�L�

v
= ε

v�2
. (5.8)

In geophysical fluid dynamics, the role of rotation is characterized by the Rossby
number:

Ro = u�

2�L0
= ε1/2

(2�)1/2L0
= L�

L0
, (5.9)

Therefore, the rotational Reynolds number is:

Re� = Re/Ro. (5.10)

Rotation is essential for Ro � 1 for flow dynamics. At Ro � 1 force the Coriolis
flow is balanced by the pressure gradient, and this flow is called geostrophic. Let l
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be the considered scale of movements, and when L� � l � Lo and l � lv from
considerations of dimensionality and similarity for velocity structure functions of
order p we can write:

Sp(l) = 〈[u(x + l) − u(x)]2〉 = apu
p
�fp(l/L�), (5.11)

where αp is a numerical factor, f p is an arbitrary function of its argument, type which
can be found from experiments, laboratory and/or numerical, and has been defined
byGolitsyn (2007). At p= 2, the structure-function S2 is related to the energy density
of spatial velocity fluctuations, i.e. with their spectrum (see Sect. 1.1):

E(k) = 2

∞∫

0

(1 − cos kl)S2(l)dl, (5.12)

where k = 2π/l– spatial wave number. If S2(I) ∼ I n, then the spectrum will also
be power E(k) ∼ k−n−1. In Golitsyn (2007), using several assumptions, has shown
that (in our notation):

E(k) ≈ u2�
L�

k−2 = (ε �)1/2k−2 (5.13)

and correspondingly:

S2(l) ≈ ε

�

l

L�

= (ε �)1/2l = a�l. (5.14)

The first formula was obtained by formally expanding the solution of the Navier-
Stokes equation into an infinite series of perturbation theory (Zhou 1995; Canuto and
Dubovikov 1997), but leaving only the first leading term of the expansion. For us,
this is equivalent to expanding the function f p in (5.11) into a Taylor series, leaving
only the first linear term.

Experiments (Baroud et al. 2002, 2003) will confirm the power-law dependence
of the magnitude of the spatial spectrum of velocity fluctuations on the wave number
in the form k-n c n = 2.04 ± 0.06 (Fig. 5.1).

Velocities in Baroud et al. (2002, 2003) were measured spatially by fixed sensors,
i.e., the signal was measured over time. Using Taylor’s hypothesis about frozen
turbulence, i.e., dispersive ratios ω = ku, frequency spectra turned into spatial ones
when u= r Ω, where r is the coordinate of the sensor, i.e., spectra k-2 associated with
the first scale ANK34 (1.31). The same is directly evident from measurements of
temperature fluctuations in rotating vessels (see below). Mechanical turbulence there
was created by the method of sources and sinks. Measurement data is also provided
there. velocity structure functions (5.11) of various orders up to p= 10. Remarkably,
Sp(I) ∼ I p/2 there it was convincingly established experimentally that distinguishes
turbulence during rotation from the turbulencewe are used toKolmogorov–Obukhov,
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Fig. 5.1 Spatial spectrum of
velocity fluctuations in a
rotating vessel by Golitsyn
(2007)

when the dimension follows Sp(I) ∼ I p/3 and where such equality is experimentally
satisfied only for p≤ 3. Figure 5.2, taken from Baroud et al., (2003) and reworked by
us in Golitsyn (2007), demonstrates these structure functions. They are constructed
in the so-called extended self-similarity approximation when along the x-axis not
the distance r that is plotted, but the ratio 5S3 / 4S23/2, proportional to r in the case
of fulfillment of the “law – 4/5” of A. H. Kolmogorov (see Chap. 2).

In Golitsyn (2007), based on the data published by Baroud et al. (2003), has
estimated the dissipation rate ε = 0.26 ± 0.02 cm2/s3 at a rotation speed of 11 rad/s
= 1.75 revolutions per second. Figure 5.2 shows that for fixed values of l from 1 to
10 cm, the distance between adjacent curves Sp(l) increases only slightly with their
number p. For our values of ε and Ω, the numerical factor αp in (5.11), which we
estimated for different values of l, turns out to be equal to αp = 5 10-3p the accuracy
of this estimate is better than 20%. As a result, we rewrite formula (5.11) as:

Sp(l) = 5 · 10−3p(2ε �)p/4lp/2, (5.15)

Fig. 5.2 Velocity structure
functions of order p from 4
to 10 (Baroud et al. (2003)
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which is true for p = 2, 4, 6, 8. For p = 10, the order of the moment S10 (l) is so high
that the statistical significance of the measurement results for it may be insufficient,
i.e., the ensemble of data is small.

An estimate of the dissipation rate ε allows us to get an impression of the nature
of the phenomena in experiments. At Ω = 11 rad/s we have LΩ ≈ 2 10-2cm = 0.2
mm.

The spatial resolution of the measuring equipment in the experiments described
was an order of magnitude coarser. Thus, since l >> LΩ, all measurements were
carried out in the Ro << 1 mode, i.e., rotation was decisive. For water, kinematic
viscosity v = 10-2 cm2/s, i.e., Kolmogorov microscale lv ≈ 4 10-2 cm = 0.4 mm,
twice the rotational scale LΩ.

Note that the moment S3(l), associated with the asymmetry of the probability
distribution function, turned out to be positive in these measurements for most of
the scale interval. This indicates a reverse cascade of energy transfer from small
scales to large ones (see Chap. 2). The flow dynamics in Baroud et al. (2002, 2003),
were quasi-two-dimensional, and the process of vortex merging, characteristic of an
inverse cascade, was observed there.

The analysis of the structure of turbulence during rotation carried out by Golitsyn
(2007) also allowed naturally two oldmeasurements of convection in rotating liquids,
i.e., thermal turbulence (Boubnov and Golitsyn 1990, 1991). One of them refers to
measurements of the diffusion coefficient at different Rayleigh numbers and angular
velocities. In these experiments, a dye was introduced to the bottom of the vessel,
and then the change in spot area S was monitored over time, which turned out to be
linear with t. The dS/dt value was identified with the mixing coefficient KΩ from
(5.5). According to these measurements, this value turned out to be many orders
of magnitude greater than the molecular value but did not depend over time on the
size of the spot. According to Taylor (1915), the eddy diffusion coefficient K ≈
ul, and in (5.5)k� = u� l� = ε �−2, whose factors do not depend on the scale of
the phenomenon l. This contrasts with the Richardson–Obukhov turbulent diffusion
coefficient, when the latter is proportional ε1/3 l4/3, i.e., it strongly depends on the
size of the spot (see Chap. 7). Then in 1990, for the authors of Boubnov and Golitsyn
(1990, 1991), such a difference seemed mysterious.

In the last two references, the frequency spectra of temperature fluctuationsET (ω)
are also presented. Being normalized to a temperature dispersion of σT 2, all measured
spectra merged into a thin rope (see Fig. 12 in Boubnov and Golitsyn (1995).
According to dimensional considerations and measurement data, the temperature
dispersion:

σ 2
T = 0.42�f ′

αg
, (5.16)

where f′ = 〈
w′T′〉/

(
ρcp

)
– kinematic heat flux, α—coefficient of thermal extensions,

w′—fluctuation of vertical velocity, сp—heat capacity of the medium at constant
pressure. In the frequency range from 1 to 0.01 Hz, the slope of the mentioned
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bundle is equal to – 2, i.e., ET = σT 2ω-2. This corresponds to the spatial spectrum
k-2 for the passive scalar when Taylor’s frozen conjecture holds turbulence: ω = ku.
Here u is the speed of reverse rotation of the liquid in the vessel as a whole. This
rotation occurs due to the law of conservation of the total rotational moment of the
liquid in the measuring vessel. Convection in our experiments occurs during cooling
from above due to the instability of the cold film through which the liquid gives
up its enthalpy by cooling, evaporation, and radiant heat exchange. This creates a
lattice vortex (see Chap. 12), transmitting cold thermals down. These thermals have a
cyclonic rotation that coincides with the general rotation of the vessel. Conservation
of the total momentum of the fluid in the vessel requires the occurrence of a slow
general reverse rotation of the fluid as a whole.

This allows us to convert frequency spectra into spatial spectra using Taylor’s
hypothesis [see formula (1.5)] as a linear dispersion relation.

Applications of these concepts and ideas to real natural processes leave it for
Chap. 9. Hurricanes, vortices in the atmosphere and ocean, etc. will be considered
there.

5.2 The Process of Vortex Merging

Here it is appropriate to give a visual analytical description of such a process of
reverse energy cascade from small to large scales, observed in many experiments.
In the spirit of the ideas of Kolmogorov, we will use the Fokker–Planck equation
for the probability density p (ω, t), where ω is the vortex component in a quasi-two-
dimensional flow. It looks like:

∂p

∂t
= D

2

∂2p

∂ω2
, (5.17)

where the diffusion coefficient has the dimension of the cube of reciprocal time. It
can be identified with the rate of enstrophy generation described in Sect. 2.3. In a
random two-dimensional flow, the statistical characteristic of vorticity is the mean
square of the vortex, called enstrophy Ωe =<ω2>, and its generation rate will be the
vorticity diffusion coefficient:

D = d�e

dt
. (5.18)

Equation (5.17) is the Fokker–Planck equation for the probability density function
p in the absence of systematic motions when it is expanded in a Taylor series to a
quadratic term in the vortex variableω (Lifshitz and Pitaevsky 1979). It has a second
moment:

〈
ω2

〉 = 2Dt (5.19)
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in full accordance with the description of Brownian motion or random walk, when
the mean square coordinates in n-dimensional space:

〈
x2

〉 = 2nDt. (5.20)

As there, the mean square of vorticity increases with time, this occurs through
the merging of vortices. Their total number decreases, and one central vortex may
remain in a closed vessel. This pattern was indeed observed several times in a 10-
meter Coriolis vessel operating at theUniversity ofGrenoble in France (afterworking
for many hours).
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Chapter 6
Sea Wind Waves

6.1 Characteristics of Waves and Similarity Criteria

Waves on the surface of the sea are one of the most fascinating natural phenomena.
Against the background of a clear period of the main peak, the random nature of the
disturbance is clearly visible. And here the laws of the ANC34 and its schools are
very clearly manifested. However, a quantitative understanding of the development
of waves under the influence of wind began only in the late 1950s. As long as the
wind overtakes the waves, you can think that they are developing.

This is how the concept of age of excitement arose:

� = U/cφ, (6.1)

where U is the wind at some level, usually considered at z = 10 m, cφ is the phase
velocity of the main peak.

The propagation of water surface disturbances taking into account surface tension
is described by the dispersion equation:

ω2 = [
g + (σ/ρ)k2

]
k th kh, (6.2)

where g is the acceleration of gravity, h is the depth of the liquid layer, k = 2π/λ is
the wave number. The second term in parentheses is compared with the first when λ
= 1.7 cm (20 °С). At kλ >> 1 excluding capillary ripples

ω2 = gk (6.3)

for deep water. For simplicity, we will limit ourselves to this case. Then the phase
and group velocities are equal to:
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cφ = ω

k
= g

ω
=

(g
k

)1/2
, cgr = dω

dk
= 1

2

(g
k

)1/2 = 1

2
cφ. (6.4)

The wave age is the first similarity parameter for wind waves:

� = Uωp

g
= Ufp

2πg
=

(
2πU 2

λg

)1/2

, (6.5)

where f p is the peak frequency in Hertz. The wave energy per unit area is given by
(Komen et al. 1994)

E = ρwg
h2s
16

= ρwg
U 4

g2
h̃2s
16

, (6.6)

where ρw—density of water, hs is the so-called significant wave height, equal on
average to 1/4 of its full height at the peak (Komen et al. 1994). The tilde sign denotes
the dimensionless value of the corresponding variable, and the height is normalized
to U2/g. The momentum is defined as E/cϕ, action—how E/ωp. The main parameter
of nonlinearity is the steepness of the wave:

s = 1

2
khs = π

hs
λ

= hsg�2

2U 2
. (6.7)

In practice, the reference wind speed at a height of 10 m is significantly deter-
mined by the stratification of the atmosphere. The atmosphere is stable when it is
warmer than water, and convectively unstable when it is colder. The age of waves
also affects the wind in the lower layer of the atmosphere through the coefficient
of wind resistance on the water surface (Kraus and Businger 1999). The problem is
complex, which is most clearly characterized by the fact that waves develop in the
middle latitudes much more slowly in the spring when the atmosphere usually has a
warmer water surface (Komen et al. 1994) than in autumn.

The state of excitement depends on the place and time of action of the wind on
the water. This is determined by the external similarity parameter—for example, the
distance eχ from the lee shore. Combined with wind and acceleration g is determined
dimensionless acceleration (fetch):

F = gx

U 2
. (6.8)

Note that the product of two similarity parameters (6.5) and (6.8) is equal to
�F = ωp/U = ωpxT , where T = x/U is the time of influence of the wind on the
developing wave.
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6.2 Fetch Law

The beginning of planned and systematic field studies of the laws of wind wave
development was laid out by Hasselman et al. (1973), which were continued in
several other projects. Research before the early to mid-1990s is summarized in
Komen et al. (1994). Dependences of the frequency of the main wave peak and its
height in Badulin et al. (2007) on accelerations are given for 23 field experiments.
The results are described in Gagnaire et al. (2011) extensive numerical experiments
on the development of waves depending on their ages that remain unsurpassed. The
most complete generalization of these results by 2017 is given in Zakharov (2017),
Golitsyn (2010) andGolitsyn et al. (2021). The resulting empirical patterns are called
fetch laws, which have the form:

Ufr
g

= AF−α or
gT

U
= Fα

A
(6.9)

g2ε

U 4
= BFβ, ε = h2s

16
, (6.10)

where A and α > 0, B and β > 0 are parameters determined over a large series of
observations. Excluding acceleration F from these two formulas gives a relationship
between height and period at peak:

16ε = h2s = U 4

g2

(
AgTp
U

) β

α

. (6.11)

The evolution of wave characteristics in real time is determined using the
acceleration laws (Golitsyn 2010) by the relations:

dE

dt
= dE

dx

dx

dt
= czp

dE

dx
, (6.12)

whence it follows that the derivative of acceleration concerning time is the group
velocity, i.e., the speed of movement of the energy of the main peak in space. Then,
using (6.4) and (6.9), we obtain:

dx

dt
= cgr = U

2�
= g

4π fp
= U

4πA

( gx

U 2

)α

(6.13)

or in the dimensionless form:

dF

dτ
= (1 − α)Fα, τ = (1 − α)

t

T0
= (1 − α)gt

4πAU
. (6.14)
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The solution of this nonlinear equation with a zero initial condition gives the
desired relationships between fetch, physical time, wave age, and their height,
steepness, and action depending on the indicators α and β (see Golitsyn 2010).

According to Badulin et al. (2007), Gagnaire et al. (2011) and Zakharov (2017)
values α are in the range from 0.23 to 0.33, and β—from 0.7 to 1.0. The values of
these coefficients are smaller when the water is colder than the air (Komen et al.
1994). When the atmosphere is colder than water, convection occurs in it, while
the heat transfer from the water cools its upper layer, and convective mixing with
deeper waters also occurs there. All this facilitates the transfer of momentum and
wind energy to the water. In the tropics, this usually happens at night because the
atmosphere cools faster than water, and cumulus clouds form over the ocean at
nighttime. With stable stratification of the atmosphere, the exchange between ocean
and atmosphere is complicated, and the values of the indicatorsα andβ are decreasing.
However, an often almost approximate relationship is always preserved (Gagnaire
et al. 2011; Zakharov 2017).

3α ≈ β. (6.15)

For example, in the most extensive and detailed project (Komen et al. 1994): α
= 0.33, β = 1.0. At lowest values α = 0.23 in Golitsyn (2010) and β = 0.7. In
intermediate cases (Kraus and Businger 1999) relation (6.15) is satisfied to within
a few percent, for example, K. Melville (private communication with the author,
February 2009) reported α = 2/7 and β = 4/5 = 0.8. Zakharov (2017) provides data
on 23 experiments, six of them with α= 0.33 and β = 1.0. In Golitsyn et al. (2021),
an analysis of all available data gave β = 3.25 (1± 0.07) α.

The index α is responsible according to (6.9) for the connection between fetch
and the period of the wave peak, and β according to (6.10) connects the square of
the wave height with fetch. It immediately follows that:

h2 ∼ T 3. (6.16)

This ratio, namely hs ~ T 3/2, was empirically established by Toba (1978) and
received the name of the law named after him. It is shown in Fig. 6.1. Surprisingly
small scatter of empirical points relative to this law, which is a reflection of relation
(6.15), but this relation itself reflects in reality A. N. Kolmogorov’s law of random
moves (1.33), which states that the average square of displacements in an ensemble
of particles:

〈
x2

〉 = εt3. (6.17)

A detailed examination of this issue with new additional experimental data is
given in Golitsyn et al. (2021).

Figure 6.1 contains a lot of the own data of the last two authors of the article
Golitsyn et al. (2021) on measurements at the Gorky Reservoir about 30 km wide.
The straight thick line corresponds to the indicator n = 1.47 ± 0.03 in dependence
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Fig. 6.1 Statistical
substantiation of Toba’s law
h2 ∼ T3, where h is the
height sea wave crest, T—its
period, dotted lines to the left
of the straight line the lines
correspond to young waves,
and on the right-old ones,
according to Kitaygorodsky
(1962)

of h, Tn, and to the left of it the points correspond to young waves with a steeper
spectrum [see further (6.20)] up to n = 5/3, and to the right are more established or
damped waves 3.5 > n > 4/3 with independence (6.20).

Thus, the value of wave age is justified as the main characteristic of the degree of
wave development when it is believed bymeans that the average age in the oceanΩ is
close to 1.2. The figure under discussion describes the evolution of the development
of the wave structure: from steeper waves to steady waves with decaying, breaking
waves up toΩ≥ 0.83. Based on the acceleration equations and formula 1.2 ≤ � < 2
(6.12), for characteristic ages Ω—2, 1.2, and 0.83—acceleration times and lengths,
wave heights, their lengths and periods are calculated for an average wind over the
ocean of 9 m/With. All these quantities are functions of the parameters α and A,
and acceleration times are hours, acceleration lengths are tens of kilometers, average
wave heights are on the order of 1–2 m, their peak lengths are tens of meters, and
periods are on the order of 5 s. An increase in wind above 10 m/s noticeably changes
the given figures. Simple algebraic forms for the wave characteristics listed above
make it possible to evaluate them.
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6.3 Wave Frequency Spectra

This connection can be considered as a structure function of displacements with zero
initial conditions (see Chap. 1). The connection of such a structure function with
stationary random increments of the second order with its spectrum is carried out by
a Fourier-type transformation (see Sect. 1.3)

Dh(τ ) = 〈[h(t + τ) − h(t)]2〉 = 8

∞∫

0

(1 − cosωt)2E(ω)dω. (6.18)

If D(t) ~ tk is a power structure function, then the spectrum will also be power
ω−k−1. For k = 3, as in (6.17), the spectrum will be ω−4.

Such a frequency spectrumof seawaveswas obtained fromconsiderations of simi-
larity and dimension by Kitaigorodsky (1962) and Zakharov and Filonenko (1966)
as a solution to the kinetic equation for the Fourier wave components of a free surface
and confirmed experimentally in 1973 by Toba (1973). Consequence laws of random
moves by A. N. Kolmogorov 1934 (ANK34) are confirmed like Toba law h ∝ T 3/2,
and by frequency spectrum of sea waves S ~ ω−4. This power-law portion of the
frequency spectrum is observed for approximately one-third of a decade after the
peak frequency and carries approximately 95% of the wave energy. In Zakharov
(2017), this section is called the “Hasselmann Sea,” and the next section, where n =
−5, is called the “Phillips Sea.” The ratio of these two spectra is determined by the
age of the disturbance. Phillips spectrum obtained in 1958 from dimensional consid-
erations for the high-frequency part, assuming that, due to the nonlinearity of the
process, the wind no longer plays a role, is equal to (Phillips 1958): Sh(ω) ≈ g2ω−5.

Measurements from flyby vehicles also make it possible to measure the spatial
spectrum of waves. Using the dispersion relation (6.3), we transform the frequency
spectrum into a spatial one Sh(k), and we get a dependence k−5/2. This form was
confirmed by measurements (Baranovsky et al. 1992), where it was found that Sh(k)
~ k−n and 2.4 < n < 2.6, at least up to wave components approximately an order of
magnitude smaller than the main peak.

As mentioned at the beginning, the main similarity parameter in the process of
wave development by wind is age (6.1), which determines whether the wind over-
takes the phase speed. It has long been visually noticed that at the beginning of
development young waves are steeper than in the middle of their development, then
they collapse, and when the wind subsides, the waves turn into swell. In Golitsyn
(2010) it is estimated that with average wind U10 = 9 m/s and neutral stratification,
the development process takes up to half a day, and with a stable atmosphere and the
same average wind speed, the time for wave development increases by 2–3 times.
Since the steepness of the waves decreases as fetch F−1/6, then their frequency spec-
trum is slightly flattened. The most complete and consistent development of wave
spectrum depending on its age was traced to the initiative of Badulin et al. (2007). It
was shown there that the spectrum:
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Sh(ω) ∼ ω−4f (�), (6.19)

where the dimensionless age function can be represented as:

f (�) =
⎧
⎨

⎩

�−1/3, if� > 2
1, if 1.2 < � < 2
�1/3, if 0.83 < � < 1.2

. (6.20)

Open ocean waves have an age of about 1.2 (Komen et al. 1994; Golitsyn 2010)
and an average height (Golitsyn 2017) hs = 2.7 m. At the same time, in the Southern
Hemisphere, the waves are higher than in the Northern Hemisphere due to greater
fetch because of a larger area of open water. The process of development of waves,
as asymptotics, is based on the third scale of Kolmogorov (1.33), but the process of
development itself is transformed due to the evolution of waves with age, and this
leads to small corrections to the spectrum in the form of a function f (Ω), whose
asymptotics are given by (6.20).

The theory of ANC34 provides a statistical model for many natural processes
and phenomena and, thereby, a rationale for using considerations of similarity and
dimensionality in concluding using the quantities involved in them. Such conclusions
should always be accompanied by comparisons with measurement data obtained
under specific and controlled natural conditions. These conditions can introduce
new dimensional quantities that form other dimensionless similarity parameters.
These parameters can influence the numerical coefficients obtained when comparing
experimental data with theoretical ones (see B02). In the case of wind waves,
this is expressed by the appearance of formulas (6.19) and (6.20). This leads to
a modification of the Toba relation: h2 ~ T 3 which will now be:

h2 ∼ Tn, n = 3 ± 1/3, (6.21)

which is in good agreement with the data on the diffusion of impurity spots of various
sizes and with the data collected by Golitsyn et al. (2021) on determining the wave
spectra. Figure 6.1, taken from Golitsyn et al. (2021), shows that relation (6.21) is
related to age waves, and real points reveal a fairly large statistical scatter, apparently
also due to inaccuracies in measurements of both the height and period of the wave
peak. However, in general, the tendency towards the implementation of Toba’s law
can be traced with confidence. The data in Sect. 7.2 testify in favor of formula (6.20).
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Chapter 7
Turbulence Eddy Mixing
in the Atmosphere and on the Sea Surface

Since the time of Charles Fourier (since 1821), diffusion has been studied based on
the parabolic equation that he proposed for the propagation of heat. Adolph Fick
used it to study diffusion in 1855, and only 70 years later L. F. Richardson realized
that diffusion occurs much faster in the atmosphere. Probably the first to understand
this was Taylor (1915), who to evaluate diffusion coefficient used the formula:

K ≈ rδu ≈ 1

2

dr2

dt
∼ dS

dt
, (7.1)

where r is the size of the spot, S is its area, δu is the velocity difference at its edges.
The next paper by Taylor (1921) showed how diffusion is accelerated in the presence
of a vertical velocity gradient. Its elegant and important generalization was given in
1958 in a short note by Novikov (1958). Relation (7.1) is very general and is widely
used below.

7.1 Atmospheric Diffusion

Richardson (1926), found some universality, most clearly formulated by him in 1929
(Richardson 1929). When considering the diffusion of a cluster with size l (air balls,
dust or smoke), he introduced (mentally) a vertical plane through the center of the
cluster and considered the standard deviation σ cluster particles from this plane.With
Fick’s diffusion dl2/dt does not depend on spot size r. Richardson (1926) showed
that this value increases with diffusion from a point source approximately as l4/3. His
graph, illustrating this dependence, contains seven points for distance intervals from
1 cm to thousands of kilometers.

In a 1929 paper, rarely cited, Richardson (1929) presented new results deter-
mination of the diffusion coefficient for several small distances from 30 cm to 10
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m and corrected his calculations in Richardson (1926), for large distances. These
experiences are so unconventional and witty that they should be at least briefly
described. The relative diffusion coefficient of two markers initially separated by
distance lο, perpendicular to the direction of the average wind, and released into the
air simultaneously, was determined by the formula:

K(l) = 1

n

∑ (
l0 − n−1�l

)2

2t
, (7.2)

where l—parallel lο component of the distance betweenmarkers at time t, the expres-
sion in parentheses is a small value compared to lο, n—number of experiments. Initial
separation of particles 1 cm. Dust grains in a sunbeam in a darkened room. Rough
estimates are given by eye K ∼ 0.2 cm2/s, which is on the order of the molecular
diffusion coefficient. To do this, we must assume that the relative speeds of the order
of 1 cm/s at distances of the order of 1 cm, and then the formula for the square of the
displacement Brownian particle

〈
�χ2

〉 = 2nDt, where n = 3—dimension of space,
with t ~ 1 s gives the desired order for the diffusion coefficient.

The initial separation is 30 cm. The tracing of two dandelion seeds was released
simultaneously. The observer stood 6mdownwind and assessed the distance between
seeds by eye. 18 such experiments gave an average value of K = 38 cm2/s.

The initial distances between markers are 154 and 181 cm (at different times
in different weather and different places). Markers—tobacco smoke from two
cigarettes. For the first cases on average over 40 experiments K ≈ 43 cm2/s. For the
second—based on 71 experiments—K ∼ 800 cm2/s.

The initial separation 5 m: hydrogen-inflated baby rubber balls, green and yellow
cost one penny. A very complex measurement procedure with three participants was
carried out on February 19 and 20, 1928, and included 8 experiments. It was received
on average K(l) = 0.7 m2/s.

The initial separation is 100 m. Many observers stood in the direction of the wind
with 4 pairs of balls were released. The score received K(l) = 10m2/s.

The initial separation is 11.5 km. Pairs of standard pilot balloons results observa-
tions of their speeds were published officially and made it possible to make corre-
sponding assessments. The averagevalue for altitudes 600–1800m is estimated at 120
m2/s, which is probably a lower estimate (Richardson 1929). The initial separation
is 28.5 km. Received 160 m2/s.

All these data are shown at Fig. 7.1 black circles along with seven estimates from
the 1926 article (Richardson 1926), corrected in Richardson (1929). The hollow
circles show the values of the turbulent diffusion coefficient thatwere calculated using
the structure functions published by Lindborg (1999). The first author conducted a
systematic analysis of data from the European MOZAIC project, in which hundreds
of commercial airline aircraft were equipped with g-force and temperature sensors.
At an average flight speed of U ~ 250 m/s (900 km/h), Taylor’s hypothesis of “frozen
turbulence”, x = Ut, is a fully applicable justification, i.e., the temporal structure of
the recorded signal can be considered as the spatial structure of turbulence.
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Fig. 7.1 Values of the
coefficient of vortex mixing,
and diffusion, according to
Richardson (1926, 1929),
hollow circles according to
Lindborg data from Golitsyn
and Fortus (2020)

Integration of overloads in time gives the time structure of flow velocity fluctua-
tions averaged over the size of the aircraft. A similar project was previously carried
out in the USA (Gage and Nastrom 1986). In both projects, the spectra for both
speed and temperature reveal a clear pattern k−5/3 in the scale range from 1 km to
500 km. For scales larger than 500 km, in both projects, the spectra approach the
k−3 dependence up to 3000 km. A discussion of these results is given in Sect. 2.4.
In Lindborg (1999), Lindborg also calculated the structure functions of horizontal
velocity for distances of 2–2500 km. Their form for the longitudinal and transverse
velocity components of the flight is as follows:

Dll(r) = a1r
2/3 + b1r

2 − c1r
2ln r, (7.3)

Dnn(r) = a2r
2/3 + b2r

2 − c2r
2ln r, (7.4)

where the numerical coefficients are determined based on statistics of more than 30
thousand hours of flight time and are as follows:

a1 = 3.6 · 10−3, b1 = 2.4 · 10−9, c1 = 0.16 · 10−9,

a2 = 4.0 · 10−3, b2 = 6.5 · 10−9, c2 = 0.43 · 10−9.

All values are in SI units, i.e., meters and seconds. Hence the variance a relative
speeds is equal to:

σu = [Dll(r) + Dnn(r)]
1/2 = [

(a1 + a2)r
2/3 + (b1 + b2)r

2 − (c1 + c2)r
2ln r

]1/2
,

(7.5)
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The first term in brackets on the right corresponds to the spectrum k−5/3, the
second—to the spectrum k−3, a logarithmic term appears from the Kraichnan (1970)
corrections, taking into account nonlocality of interactions of spectral components
in the enstrophy transfer interval.

The relative diffusion coefficient is determined by (6.1) and (6.4)

K(r) = rσu ∼ r4/3, (7.6)

which is reflected by the hollowdots in Fig. 7.1. It showshowclose hewasRichardson
to modern ideas almost a hundred years ago: a comparison of the latter formulas with
(7.2) gives δu ∼ r1/3 ! This figure combines data obtained in the surface layer of
air, with different average winds, and in different areas, the first 6 points—in the
lower and middle troposphere, the last 4 black points—in the upper troposphere,
hollow circles are ours, G12. There seems to be a slight spread of such a diverse set
of data regarding addiction r4/3 is related to which according to A. M. Obukhov 1/
3K = cROε1/3r4/3, and the cube root of the speed dissipation ε is a primary factor
in reducing this variation in the upper troposphere, according to Lindborg (1999),
ε ∼ 10−4m2c−3. Then from the first three hollow points figure, where the structural
functions ~r2/3 constant in the Richardson-Obukhov law can be estimated at 0.2,
MY75. This law corresponds to scale (1.32) in the ANK34 time scale system. The
proximity of classic and modern results is evidence of the constancy of the laws of
nature and their correct understanding and stability of their assessments by previous
generations of scientists and a hundred years before us.

Subsequent work by Lindborg and his colleagues (Brethouwer et al. 2007;
Brethouwer and Lindborg 2008) explains the presence of spectral interval K−5/3 for
horizontal scales 1÷500 km specific turbulence in a stably stratified environment.
In this case, the velocity fields are homogeneous and isotropic only in horizontal
layers, and then the straight line is a cascade of turbulent energy from large eddies
to smaller ones.

Vertical turbulent exchange in the atmosphere is determined by its stratification.
With unstable stratification, i.e., with convection, for small scales, for example, in
the boundary layer, one can use the general formula (7.1). Then for vertical speed,
the Deardorff formula holds:

w ≈ (bz)1/3, (7.7)

that is, the coefficient K(r) will be proportional b1/3z4/3, in agreement with
Richardson and Obukhov, since in the quasi-stationary case the buoyancy flow
b ≈ ε , order rate of dissipation of kinetic energy of turbulence.

Exchange with strong stability was studied by Monin and Obukhov back in 1953
(seeМЯ71, Chap. 11.5), andmore recently by Lindborg and Fedina (2009), when the
coefficient of vertical turbulent diffusion does not depend on height but is determined
by stratification parameters.

In the recent work of the first author with Fortus (Golitsyn and Fortus 2020),
calculations of the turbulent coefficient diffusions were re-run with a composite
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spectrum corresponding to approximations (7.2), (7.3) and (7.4). Methodological
issues of numerical calculations are also discussed there. Actions with composite
spectra when the 1941 spectra are at distances up to 500 km begin to be overpowered
in energy by the spectra of geostrophic turbulence (Charney 1971; see Chap. 2.4).

7.2 Coefficient of Horizontal Eddy Mixing at the Sea
Surface in Dependence on Wave Age

Description of the distribution of impurities over the water surface is an important
practical problem. The presence of wind waves makes this a statistical problem. This
can be addressed by detailed operational surface wave forecast models. However,
it is always important to know the fundamental theoretical laws of this process. In
1950–1970 in connection with applied aspects problems and the lack of adequate
wave forecast models, much effort has been directed to field measurements of the
diffusion of surface impurities.

This work was started in the late 1940s by Richardson and Stommel (1948) and
continued by Stommel (1949). The first, carried out on January 6, 1948, from a pier
off the west coast of Scotland, studied the mutual movement of clearly visible flat
white pieces of cut turnips. The size of the cluster of these pieces on the surface of
the water was about three meters or less. The distances between particles and their
changes over time were visually monitored. Processing of measurement data was
carried out according to the method described in Sect. 7.1 by formula (7.2).

It was found that the relative diffusion coefficient K, just like in the atmosphere,
is a power function of the spot size with the same exponent (in our reprocessing 1.32
≈ 4 / 3 according to tabular data (Richardson and Stommel 1948):

K(r) ∼ rβ, β = 4/3, (7.8)

The same value of 4/3 was obtained by Stommel (1949) for a scale interval up to
one kilometer with Stommel’s ingenious use of various tracers. Figure 7.2 shows the
results of our data reprocessing Stommel (1949), where a straight line corresponds
to a slope of 4/3. These results do not differ significantly from those in Stommel
(1949). An overview of research results up to the mid-1980s can be found in the
book Ozmidov (1986). Okubo (1971) analyzed a large amount of measurement data
in both the spatial and temporal evolution of sea surface. Both types of dependencies
are close to power-law ones when both r and time t change over at least three orders
of magnitude: rβ and tγ. For the diffusion coefficient (7.8) magnitude β≈ 1.15 within
dimensions of up to many hundreds of kilometers, which is depicted in Fig. 7.3. The
corresponding sizes of spots change over time in the same power-law manner as tγ

with γ= 2.33. For times from an hour to a month, this dependence, formula (3) from
(Оkubо 1971), has the form S(t) = 0.0108 t2.34 (recalculation in Golitsyn 2007).
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Fig. 7.2 Spectra of
horizontal components of
velocity and potential
temperature (Gage and
Nastrom 1986)

Fig. 7.3 The diffusion
coefficient of markers on the
water surface at scales from
1 to 100 m according to
Stommel (1949)

The first author’s work (Golitsyn 2007) indicated the relationship between the
energy frequency spectrum of wave elevations on the water surface and the studied
value of the horizontal turbulent mixing coefficient K(r), determined by (7.1), where
δu is the average velocity difference in the fluid on scale r. This difference should be
estimated as the square root of the velocity structure function:

δu = [Du(r)]
1/2,Du(r) = 〈[u(x + r) − u(x)]2〉, (7.9)

where, for simplicity, we abstract from the vector nature of the velocity field, from
the angular spectrum of waves, and consider its component in the direction of wave
propagation, i.e., wind. The structural function Du(r) is associated with the spatial
spectrum energy of velocity fluctuations by the relation:



7.2 Coefficient of Horizontal Eddy Mixing at the Sea Surface in Dependence … 71

Du(r) = 2

∞∫

0

(1 − cos kr)Eu(k)dk, (7.10)

where k = 2π/r—wave number. In reality, the frequency spectra of surface eleva-
tions are measured—for wind waves Ez(ω). Knowing them, we can estimate the
frequency spectrum of fluctuations of the vertical velocity component w = dz/dt:

Ew(ω) = ω2Ez(ω).

Due to the incompressibility of the liquid in the wave, the frequency spectrum
of horizontal velocity fluctuations during waves should have the same frequency
dependence:

Eu(ω) = aEw(ω) = a1ω
2Ez(ω), (7.11)

where α1 is the numerical coefficient that must be determined experimentally or
from some detailed models. Its value may depend on the similarity parameters for
waves, e.g., the wave age 
 = U/cϕ , which for waves in deep water is equal
to 
 = U10ωp/g. The wind speed is taken at the standard level of 10 m, and ωp—
angular frequency of thewave peak,which is a function of acceleration—seeChap. 6.
2. Further for simplicity, we take the quantity α1 constant. Also, for simplicity, we
will limit ourselves to the case of waves in deep water, when the dispersion equation
ω2 = kg. In this case, simple analytical results can be obtained. The case of a general
dispersion relation for waves in a layer of arbitrary depth was studied numerically in
Golitsyn (2007).

The relationship between frequency and spatial spectra is given using group
velocity by the relation:

Eu(k) = Eu(ω) · cgr, cgr = dω

dk
= g

2ω
= 1

2

(g
k

)1/2
. (7.12)

As a result, we obtain for the spatial spectrum of horizontal velocities in wave:

Eu(k) = 2ang
1/2k−5/2Ez(ω(k)). (7.13)

Next, using transformation (7.10),wefind the structure function of velocities, after
which formula (7.9) gives the dependence of the diffusion coefficient on distance r:

Kn(r) = a2(a1an)
1/2rβ, β = n + 1

4
, (7.14)

where n is the exponent in the energy-carrying part of the frequency spectrum of
elevations immediately to the right behind the peak frequency ωp for approximately
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half an order of magnitude frequencies or an order in wave numbers K, the so-
called Hasselmann sea (see Chap. 6). Numerical coefficients α2 and αn a subject to
experimental determination.

Note that the structure functions of velocity fluctuations, as follows from
definitions (7.9) and (7.10), are equal for the spectrum Ez(ω) ∼ ω−n:

Du
∼= a1anr

n−3
2 . (7.15)

with the spectrum of KZT (Kitaygorodsky, Zakharov, Toba), when n = 4, we have
K(r) ∼ r5/4, Dn(r) ∼ r1/2, for the Phillips spectrum describing high-frequency part,
n = 5 and K(r) ∼ r3/2, aD5(r) ∼ r.

With these classical spectra, the early results of Richardson and Stommel (1948)
with β = 4/3 are similar to atmospheric values. From (7.14) we find that this value
of the exponent β corresponds to n = 13/3. This value was obtained in a numerical
model (Gagnaire-Renou et al. 2011) for young waves with age Ω > 2, i.e., at low
accelerations. Considering that the measurements (Richardson and Stommel 1948;
Stommel 1949) were made close to the coast, the explanation for the value β = 4/3
can be based precisely on the young age of the waves. The same indicator n = 13/3
was first obtained by Hasselman (1974) under the condition of a constant momentum
flux from the wind to the water surface.

Small Okubo exponents (1971) all refer to large scales of hundreds of kilometers
and large diffusion times. In the samemodel (Gagnaire-Renou et al. 2011), old waves
with indicators Ω < 1.2 up to Ω ≈ 0.83 when saturated, waves have a spectral slope
with an exponent n ≈ 11/3. Our formula (7.14) gives this β = 7/6, which is very
close to the Okubo value of 1.15. The work by Оkubо (1971) also provides tables
of primary data for both the diffusion coefficient and the growth of spot sizes over
time. Therefore, we can count the uncertainties exponents, which was done with a
security of 95% and gave β = 1.15± 0.05; γ = 2.33± 0.11, and in Ozmidov (1986):
β = 1.15, γ = 2.34 (Fig. 7.4).

All that remains is to admire the accuracy of Okubo’s eye as he drew straight lines
among the scattering of points in logarithmic coordinates.

For the age of excitement within 1.2 < Ω < 2 according to Gagnaire-Renou et al.
(2011) n= 4, and then β= 5/4, although experiments confirming such dependencies
could not be found. Let us dwell on the dependence of the spot area on time S(t).
From the parabolic diffusion equation with a mixing coefficient depending on the
coordinate as K (r) ∼β it follows, taking into account (7.14), that

r2 ≈ S(t) ∼ t
2

2−β = tγ , γ = 8(7 − n)−1. (7.16)

At constant diffusion coefficient β = 0 we obtain S(t) ~ t, as in Brownian motion
(or as in convection in a rotating fluid, Chap. 9). For n= 13/3, young waves, we have
S(t) ~ t3, as in the atmosphere (and as in Sect. 1.3), and for n = 11/3, old waves,
we have S(t) ~ t12/5. The last value is very close to the empirical value and describes
diffusion at times from an hour to a month: γ= 2.34 (empirics Golitsyn 2011, 2.33±
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Fig. 7.4 The area of the
pollutant stain depends on
time (Ozmidov 1986) up to
several months (G12)

0.11), obtained in Оkubо (1971), collected in Fig. 7.5. If β = 1, then S(t) ~ t2, as in
ballistic expansion, when r ~ t, apparently, if this stage is achieved, it is rare, since
such data could not be found. In the same way, for n = 5 it turns out that S(t) ~ t4,
and this stage is not traced in real data. We remind you that our above processing
gave γ = 2.33 ± 0.11.

Our formulas (7.14) and (7.15) connect the age of excitementwith the real physical
time of its development. In medium winds U10 = 9 m/s (see Chap. 6.3 and Golitsyn
2011) it is possible (G12) to obtain that age Ω = 2 achieved in one and a half
hours, age 1.2—in four hours, and saturation Ω = 0.83—in half a day. The synoptic
period in the atmosphere, i.e., a constant wind, lasts two to three days, then it is not
surprising that Okubo’s data (Okubo 1971) correspond to the values 0.83 < Ω < 1.2,
i.e., developed excitement. A more detailed description of these results can be found
in Golitsyn (2011) and Golitsyn and Chkhetiani (2014).

Vertical turbulent diffusion in stably stratified flows, especially important for the
ocean with its thermocline, highly stably stratified, for a long time, did not lend itself
to a fairly simple theoretical description. During the war, Obukhov (1946) showed
that with strong stability, the coefficient of vertical turbulent mixing is related to the
inverse Richardson number. Only recently has a new approach to this problem began
to be developed by Lindborg and Brethower (2008) and Lindborg and Fedina (2009),
where the formula was derived.

Kz = εpN
−2, (7.17)
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Fig. 7.5 The diffusion
coefficient according to
Okubo (1971) is up to
thousands of km

where εp is the rate of generation (dissipation) of potential energy (buoyancy) in
a layer with a gradient of potential temperature and humidity, N2 is the square of
the Brunt–Väisälä frequency, which can be associated with the Richardson number.
Detailed numerical experiments confirm the theoretical conclusions in Lindborg and
Brethower (2008) and Lindborg and Fedina (2009), although detailed comparisons
with field data have not yet been made.
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Chapter 8
Statistical Structure of the Relief
of Celestial Bodies—Kaula’s Rule

The space age and its technologies led to the establishment of new natural patterns
that remained ununderstood for many decades after their discovery. These include
statistical patterns of gravity fluctuations, and then relief, first for our planet, and
then for other celestial bodies (Turcotte 1997). In its original form, when it was
noticed by Kaula (1966), soon after the names of the author called “Kaula’s rule,”
which stated that fluctuations of the Earth’s gravitational field, being expanded into a
spatial spectrum into spherical harmonics, have an amazing property: the coefficients
of these harmonics, starting from number n ≥ 4, decrease as n−2. Later it was
found that Turcotte (1997) and the surface relief, considered as a random field, have
property or the Moon, Mars, Earth (Rexer and Hirt 2015), Venus (Turcotte 1997)
for the asteroid Vesta (Konopliv et al. 2014) with a size slightly less than 300 km,
and in 2016 for a celestial body several kilometers in size (McMahon et al. 2016).
In (Rexer and Hirt 2015) there was a special method for calculating harmonics up to
n = 43200 was developed and such calculations for the Moon were carried out up
to linear scales of 120 m, and for the Earth—up to 700 m. For Mars, the number of
harmonics in Rexer and Hirt (2015) is half as much.

All this time, the origin ofKaula’s rule remained unclear, and it was even called the
“rule of thumb”1, and only in 2019 the physical andmathematical origin andmeaning
of this rule were explained (Gledzer and Golitsyn 2019a, 2019b]. The explanation is
based on the rules of A. N. Kolmogorov, described here in Ch. 1.3.

In fact, this is a consequence of the shortened equation (1.3) in the form of a simple
Fokker–Planck equation, although it was the ideas of A. N. Kolmogorov inspired the
authors Gledzer and Golitsyn (2019a) to deeply analyze the “Kaula rule” from the
point of view of the distribution function for the probability of the relief field p(y, h),
where y is the meridional coordinate, h is the vertical coordinate, i.e. the height of a
given surface area. The dimensions of such a section are determined by the resolution

1 In ancient Rome, at gladiatorial games, the fate of the defeated gladiator was decided, without
explanation, by the emperor: thumbs up - life, thumbs down - death. Nowadays, a thumbs-up is a
sign of approval.
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of the equipment producing star border reliefmeasurements. The absence of a latitude
coordinate in the distribution function p is associated with the features of spherical
harmonics (their numbers in longitude n ≤ m) and the practice of presenting the
results obtained with their help. Standard the form of the Fokker–Planck equation is:

∂p

∂t
= D

2

∂2p

∂h2
, (8.1)

and it is in this form that a random temporary recording is interpreted by the device
at a flyby vehicle on a satellite or airplane. With a known flight speed u, the time in
the record is transformed into the horizontal coordinate y = ut, and then equation
(8.1) takes the form:

∂p

∂y
= D1

2

∂2p

∂h2
, D1 = D

u
. (8.2)

The diffusion coefficient D1 has the dimension of length. But if vertical and
horizontal coordinates have their dimensions, then D1 = L2h/Ly, which reflects the
diffusion nature of the relief formation process. Last thing the equation gives the scale
and structure function with zero initial conditions in the form of a known solution
to this equation, namely, the second moment of the function probability distribution
p(y, h):〈

h2(y)
〉 = 2D1y with appropriate spectrum:

S(k) = D1

π
k−2, k = 2π

λy
, (8.3)

where λy is the horizontal wavelength. This equation in this form applies to small
areas. Thus, in Turcotte (1997), spectra are presented for 2 < λy < 60km, measured
in the 1980s in Oregon for flat, hilly, and mountainous areas. All of them have a
power-law form k−n, with n = 2.03± 0.04 over 24 meridional and latitudinal spans,
as estimated in Gledzer and Golitsyn (2019a).

The derivative of the relief along the horizontal coordinate is the slope angle, and
the spectrum of these angles for n = 2 is equal to

Sζ (k) = k2S(k) = D1/π = const , (8.4)

i.e., this is a white noise spectrum, which corresponds to the δ-correlation of hori-
zontal angles, and this in probability theory is aMarkov process. This is, in our terms,
the main position in the theory of A. N. Kolmogorov in 1934 (see Ch. 1.3):

〈ς(y1)ς(y2)〉 = ς2δ(y1 − y2). (8.5)

In the book Turcotte (1997), the spectrum index n = 2 was proposed along with
other statistical characteristics, such as the Hausdorff measure, and the fractal index,
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which are related to n, but without explaining their physical meaning, in connection
with the spectrum of slope angles. Gravity acts along the relief slope, water flows,
rocks fall, and the slope resists the wind—all these relief-forming factors act uncor-
related (up to certain not very large scales) and lead to a relief spectrum k-2, that is,
angles are a factor g sinθ , forming a relief.

Celestial bodies are finite formations, and their spectral harmonics are discrete.
Let us give the basics of the spherical term used here. Harmonic analysis. Consider
a random relief surface h(ϕ, θ) on a sphere with radius r, where φ is longitude,
0 ≤ ϕ < 2π, θ is the complement to latitude: 0 ≤ θ ≤ π. Then the derivative of the
relief is equal to the angle θ.

∂h(φ, θ)

r∂θ
= ςθ (ϕ, θ)

Let us denote y = cos θ and represent the relief as a sum of associated Legendre
polynomials P|m|

n (y):

h(ϕ, θ)

r
= −

∞∑

n=1

n∑

m=−n

anm exp(imϕ)�|m|
n (y),�|m|

n (y) = N |m|
n P|m|

n (y),

∫ 1

−1
�|m|

n (y)�|m|
k (y)dy = δnk , N |m|

n =
(
2n + 1

2

(n − |m|)!
(n + |m|)!

)1/2

. (8.6)

Then, using (8.6), the angle of inclination of the relief is expressed by its derivative:

ζθ (ϕ, θ) =
∞∑

n=1

n∑

m=−n

anmexp(imϕ)sin θ
d�

|m|
n (y)

dy
. (8.7)

Having performed all the necessary (and tedious) actions described in Gledzer
and Golitsyn (2019a), for the spectral components of the relief we obtain:

Sn = α2

n(n + 1)
, Eθ = 2π

∞∑

n=1

Sn, (8.8)

whereα is the average angle of the slope in the relief,Eθ—total “energy”of inclination
angles, obtained after summation over n. The total “energy” of the relief itself (in the
root mean square sense after summing the amplitudes of all harmonics) turns out to
be equal:

E = 4π
∞∑

n=1

r2a2

n(n + 1)
= 4πr2α2 = 4πrD1, (8.9)

where D1 is the horizontal diffusion coefficient in equation (8.2), and at the same
time it was it is considered that:
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Fig. 8.1 Amplitudes of
spherical relief harmonics
for the Earth, a, and Venus,
b, from (Turcotte 1997).

∞∑

n=1

1

n(n + 1)
= 1, due to

1

n(n + 1)
= 1

n
− 1

n + 1

and the denominators of neighboring terms differ by one.
The resulting spectrum (8.8) differs from the “rule of thumb” spectrum Kaula n−2

since the amplitude of the harmonics here drops as [n = (n+ 1)]−1. With increased
harmonic numbers n this difference from n−2 decreases as [n2 = (n + 1)]−1, but
for small n the difference is quite noticeable, for example, for n = 1 the spectral
component is half that of Kaula, however, harmonics with small n are determined by
internal geodynamics of celestial bodies and, as can be seen in Fig. 8.1, amplitudes
only starting from n ≥ 4 fits more or less satisfactorily on the line n−2.
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Fig. 8.2 Spatial spectra for the Earth, Mars, and the Moon according to Rexer and Hirt (2015),
where asymptotes k−2 and k−4 were added in Gledzer and Golitsyn (2019a), from Gledzer and
Golitsyn (2019b).

This figure, taken from the book (Turcotte 1997) makes it possible to estimate
the diffusion coefficient D1 for the Earth and Venus. According to (8.9), the spectral
harmonic is equal to:

Sn = 4πrD1

n(n + 1)
. (8.10)

To estimate the horizontal diffusion coefficient D1 for the Earth, we selected
harmonicswith numbers n= 5, 10, 20, 30, 40, 60, and 90. This gaveD1 = 1.3±0.3m.
For Venus numbers 5, 10, 15, 20, 30, 40, and 50 were taken, which resulted in
D1 = 0.2±0.03m.The accuracy of determiningD1 values is about 20%, the accuracy
of determining values by eye we estimate the component with Fig. 8.1, but there is
also a natural scatter. The difference in the values of the spectral coefficients for the
two planets was noted by Turcotte (1997), with the remark that on Venus the data
relate only to fairly smooth equatorial regions.D1 value is an analog of the numerical
constant in Kaul’s law n−2.

Similar estimates can be obtainedwithmuchgreater accuracy and statistical power
from the data of Rexer and Hirt (2015), but the authors of Gledzer and Golitsyn
(2019a), with a total age of more than 160 years, left this for younger colleagues
with the hope that such work will yield a lot of new and interesting things. Data from
Rexer and Hirt (2015), are presented in Fig. 8.2.

They are supplemented by two lines corresponding to the spectral dependences
k−2 and k−4. The transition to a steeper spectral dependence of the relief can be
explained by the appearance at short distances of a correlation between slope angles
(Gledzer and Golitsyn (2019a):
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Bθ (θ(y1)θ(y2)) = exp (−βy), (8.11)

where β = 1/yo is the reciprocal value for the wavelengths where such a correlation
appears. The spectrum for such a correlation function is (see Ch. 1.1)

S0(k) = β

π
(
β2 + k2

) , (8.12)

and if we know the spectrum of the derivative, here of the angles, then the spectrum
of the quantity itself—the relief—will be:

S(k) = k−2S0(k) = k−2β

π
(
β2 + k2

) . (8.13)

This spectrum has corrected asymptotics at both ends at k2 � β2 it is proportional
to k−2, and at small distances k2 � β2 spectrum k−4. The gravity on the Moon is six
times less than on Earth, and there is a high-frequency part of the spectrummanifests
itself much earlier than on Earth and Mars, as can be seen in Fig. 8.2. Determination
of the physical nature of the constant β and its connection with material constants
of planets and their surfaces can be found in Golitsyn (2021), where it is shown that
β0 ∝ g, which also follows from visual analysis of Fig. 8.2. It is obvious that the
values of β are determined by the properties of the material of the surface rock, and
the latter are related to the speed of sound in them. Eventually β0 = g/c2o, c

2
0 = μ/ρ,

where μ is the modulus of uniform compression, i.e. Young’s modulus. The work
(Gledzer and Golitsyn (2019a) is an expanded version of the preliminary publication
(Gledzer and Golitsyn (2019b).

References

Gledzer EB, Golitsyn GS (2019a) Kaula’s rule—a consequence of probability laws by A. N.
Kolmogorov and his school. Russ J Earth Sci 19:ES6007. https://doi.org/10.2205/2019ES
000651

Gledzer EB, Golitsyn GS (2019b) Structure of the relief and gravitational field of planets: Kaula’s
rule as a consequence of the probabilistic laws of A. N. Kolmogorov and his school. Dokl. RAS.
485(4):391–394

Golitsyn GS (2021) Features of the spectrum of the surface of the Moon and planets. Astron
Messenger 55(1):34–37

Kaula WM (1996) Theory of Satellite Geodesy. Bleinsdell, Waltham. Ma– pp 124
Konopliv AS et al (2014) The Vesta gravity field. Icarus 240:103–117
McMahon JW et al. (2016) Understanding the Kaula’s rule for small bodies. In: Proceedings 47-th

lunar and planetary science conference, AGU, Washington, D.C.. https://www.hou.usra.edu/
meetings/lpsc2016/pdf/2129.pdf

https://doi.org/10.2205/2019ES000651
https://www.hou.usra.edu/meetings/lpsc2016/pdf/2129.pdf


References 83

Rexer M, Hirt C (2015) Ultra-high spherical harmonics analysis and application to planetary
topography of earth. Mars and Moon Surv Geophys 36(6):803–830

Turcotte DL (1997) Chaos and fractals in geology and geophysics. 2nd ed. Cambridge, Cambridge
University Press, pp 398



Chapter 9
Stochastic Motions at the Prescribed
Rotation (Hurricanes et al)

9.1 The Scale of Events and Similarity Parameters

As noted in the Introduction and Chap. 5, random motions during rotation are char-
acterized by the fact that in them, time is specified by the period of rotation, which
determines the speed and reactions of emerging objects. This increases the stability
hydrodynamic, and simply mechanical, systems andmovements (for example, bike).
This is clearly seen in the example of convection, the onset of which tightens with
increasing rotation, which was first shown analytically Chandrasekhar (1961). The
process is characterized by three similarity numbers: Rayleigh number:

Ra = αgh3�T

kv
, (9.1)

where α is the coefficient of thermal expansion of the liquid, h is the thickness of
the considered layer across which the gravitational acceleration g acts, ΔT is the
difference temperatures between the lower and upper boundaries of the layer, k and
ν are molecular thermal diffusivity and viscosity coefficients.

The second similarity parameter is the Taylor number:

Ta = 4�2h4

v2
= Ek−2, (9.2)

the square of the ratio of the Coriolis force to the viscous forces, Ek is the Ekman
number. In Chandrasekhar (1961) graphs of stability curves are presented in a linear
approximation for different types of boundary conditions for velocity in a flat layer
of liquid. For not very large Ta the value of Racp increases slowly, but for Ta > 106

it grows like Ta2/3. The third similarity parameter—Prandtl number Pr = ν/ k.
Chandrasekhar (1961) established that convection occurs when the Rayleigh

number (9.1) Ra > 106 reaches a critical value proportional to:
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Racr = kiTa
2/3 = kiEk

−4/3, (9.3)

where ki—numerical coefficient determined by boundary conditions. From (9.1),
(9.2), (9.3)we canobtain an expression for the reduced force of gravity for sufficiently
large Taylor numbers:

g′ = gα�T = 2.83kiTa
2/3kvh−3.

The role of rotation is significant, and the movements are geostrophic when the
dimensionless number Kibel–Rossby

Ro = U/lcd << 1,

whereU is the speed of movement, Ic = 2�sinθ.– Coriolis parameter on the sphere,
θ—addition to latitude. This number is the ratio of the rotation period to dynamic
period To = d/U , where d is the diameter of the phenomenon.

In convection, the main driving role is played by the buoyancy flux density
b = αgf /ρcp, where f is the heat flux per unit area, cp is the heat capacity at
constant pressure. Under quasi-stationary conditions, on average equal to the speed
of energy generation/dissipation. The amount of kinetic energy in the system is equal
to incoming energymultiplied by the shortest time characteristic of the system,which
for Ro << 1 is estimated by the inverse Coriolis parameter lc−1. As a result, from
dimensional considerations, as well as from the Kolmogorov scale (1.31), we obtain
for layer

U = c(b/lc)
1/2, (9.4)

where c1 ≈ 1.7 is a numerical coefficient with an accuracy of several percent
(Boubnov and Golitsyn 1995), according to numerous laboratory measurements.
Similar considerations lead to the horizontal scale of area irregular vortices arising
in the flow after reaching Ra > 30 Rakp. (Ch 13). Identity with the ANK34 scales at
a fixed Coriolis time is obvious: the square of the speed in (9.4) is proportional to
time lc−1, and the area scale (see Ch 1.3).

S = c1bl
−3
c , (9.5)

where с1 ≈ 10 (Boubnov and Golitsyn 1995) is necessary at comparison with exper-
iments. Equation (9.5) is the moment < x2 > = ε t3. Fixed time at a given excitation
allows the development of a certain size of vortices and currents. This is clearlymani-
fested in the comparison of polar and tropical hurricanes: the first ones at latitude θ
= 70° are several times smaller than tropical ones at latitude θ = 20°. Indeed, (sin
20°/sin70°)3/2 ≈ 0.22.

The fixation of the rotation period is clearly manifested in horizontal diffusion
(Boubnov and Golitsyn 1991, 1995), when the area of the marker spot grows linearly
with time. Then the diffusion coefficient is constant and equal in size (Ch. 5)
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K = b�−2 ∼ bT 2
r ,

where Tr—period of rotation, constant value. It is instructive to compare this
expression with the second scale (1.31), indicated by Obukhov (1962).

〈ux〉 = εt2, (9.6)

where t—already current time. Of course, both scales are the same by dimension.
The setting of the rotation period makes the current more stable compared to the
cases of its absence, introducing at the same time some specificity. A series of results
obtained in laboratory experiments (Bubnov and Golitsyn 1990, 1991) demonstrates
a regular and irregular mode of convection in a rotating vessel with a diameter of 17
cm (see Figs. 13.6, 13.7, and 13.9).

Sir James Lighthill (1923–1998), a foreign member of the USSR and of many
other academies, headed in 1990–1999. International Scientific Committee at the UN
decade (1990–1999) to combat natural disasters. In his lectures in 1995, he noted that
the fact remains unclear why tropical hurricanes reach kinetic energy of the order of
1018 ÷ 1019 J, which is equivalent to the explosion of thousands of hydrogen bombs.
The strength and power of hurricanes have always amazed people, bringing terrible
calamities and destruction. The hurricane of 1265 destroyed the Mongol fleet, which
went after the conquest of China to conquer Japan. Every year in the world of about
80 hurricanes are observed, and the total effect from them and other meteorological
disasters noticeably surpasses all other natural disasters according to the UN.

9.2 Hurricanes

Systematic observations of hurricanes began in World War II, especially over the
Pacific Ocean during the US war with Japan. They received systematic development
at the beginning of the satellite era. Understanding that hurricanes arise as a result of
thermodynamic disequilibrium between the ocean and the atmosphere, which came
only from the middle of the twentieth century (Riehl 1954). No wonder its hurricane
season characterized by conditions when the surface of the ocean water is warmer
than the air (Palmen and Newton 1969). Then a flow of sensible and latent heat
(evaporation) arises, forming a buoyancy flow:

b = − g

ρ0

(
ρ ′w′), (9.7)

where ρ0 is the density of the ambient air, the dash marks the fluctuations of the
vertical components of velocity and density. The state is determined not only by
temperature fluctuations, but also by water vapor, which is 0.622 times lighter than
air.
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We remind you that under quasi-stationary conditions, the value of b is equal to ε,
the rate of generation/dissipation of kinetic energy of turbulence.We remember A.N.
Kolmogorov 1934 (Sect. 1.3), that the scale of the mean square velocity is equal to
U2 = bt, and the area scale < x2 > = S = bt3. The time scale is set by the rotation
of the planet, on the sphere—by the Coriolis parameter lc = 2ω sinθ, where θ is
the complement of latitude. Rising convective columns, and thermals, suck the air
surrounding them, concentrating its angular momentum. To obtain the total kinetic
energy, you need to multiply the product of these two scales per mass of a single
atmospheric column M = 104 kg/m2. Eventually:

Ke = Mb2l−4
c . (9.8)

This compact formula, previously obtained by dimensional analysis (Golitsyn
2008), gives the correct order of magnitude for both tropical and polar hurricanes.
So, for latitude 20° lc = 0.5 10–4 c−1 and b = 1 kW/m2 we get Kc ≈1018 J, and if
we consider the factor c1 in (9.7), then we get 1019 J. Note that 1 Mt of explosive
trinitrotoluene is equal to 1.6 1015J. At latitudes θ = 70° the Coriolis parameter is
lc = 1.37 10–4 c−1, and polar hurricanes arise in them when cold air invades seas
open from ice, the buoyancy parameter arises mainly due to the huge temperature
differences between air and water, where T ≈ 0°, so their sizes are several times
smaller than the size of tropical hurricanes, (Fig. 9.1). Figure 9.2 gives a photo of a
polar hurricane, and Fig. 9.3—a hurricane of similar formation over the Black Sea.

A detailed consideration of the formation of heat and moisture flows, considering
the emerging winds, made it possible to obtain the necessary conditions for the
occurrence of hurricanes (Golitsyn 2008, 2009). Let us briefly describe the process of

Fig. 9.1 Tropical cyclone-hurricane “Ivan” 09/15/2004 (https://www.nesdis.noaa.gov/search/con
tent/Ivan)

https://www.nesdis.noaa.gov/search/content/Ivan
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Fig. 9.2 Polar hurricane (mesocyclone). G12

obtaining them. The interaction of the ocean and the atmosphere, and their exchange
of momentum, heat, and moisture is described by the so-called bulk formulas (Gray
1968; Kitaygorodsky 1970; Fairall et al. 2003):

τ = ρ
〈
u′w′〉 = ρu2∗ = cdρU

2, (9.9)

FSH = ρcp
〈
w′T ′〉 = cTρcpU�T , (9.10)

FLH = ρ
〈
q′w′〉 = cEρU�q, (9.11)

where u’, w′—fluctuations of the horizontal and vertical components, T ’ and q
’—fluctuations of temperature and water vapor mixing ratio, cd , сT , cE—resistance
coefficients for impulse, sensible and latent heat,U—speed wind at a standard height
of 10 m above sea level, ΔT = T 1–Tα temperature difference between the water
surface and the atmosphere at z = 10 m, Δq is the difference between the mixing
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Fig. 9.3 Hurricane-like whirlwind over the Black Sea 09/25/2005 (Efimov et al. 2007)

ratios for water vapor at the sea surface and the same height of 10 m. At the surface,
the relative humidity is assumed to be 100%. The mixture ratio is related to the
specific density e (T ), i.e., water vapor pressure, ratio (Riehl 1954; Palmen and
Newton 1969):

q = 0.622
e

p
,

where p—atmospheric pressure, 0.622 = μw / μα—molecular weight ratio for water
vapor and air. Relative humidity r = e/es, where es is pressure saturation. According
to theClayperon–Clausius equation, the value of es depends exponentially on temper-
ature. There are various approximations of this dependence (Golitsyn 2008, 2009).
With an accuracy of several percent, the heat of condensation of water vapor is L =
106L1 J/kg, and the value of L1 in the observed range of sea surface temperatures
from—2° to 31° varies from 2.506 to 2.430.

An essential parameter for describing convection is the buoyancy flux, which,
considering the equations of state of air and water vapor, is equal to:

b = − g

T

〈
w′T ′〉 − 0.622

〈
w′q′〉

Using formulas (9.10) and (9.11), this expression is reduced to the form:
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b = −g′U , g′ = cT
�T

T
g

(
1 + 0.378

�e

ρ�T

)
, �e = es(Ts) − res(Ts) (9.12)

where the value g’ is the reduced acceleration of gravity in heated and humidified
air, 0.378 = (μa − μw)/μa and also accepted the following (Kitaygorodsky 1970;
Fairall et al. 2003) the equality of the coefficients сT , cE ≈ 1.3 · 10–3.

Equation (9.12) determines the buoyancy flux before moisture condensation.
Calculations and observations for hurricanes show that at typical relative humidity
values r= 0.75–0.8 per 10m, cloudiness forms at an altitude of 300–400m. TH, trop-
ical hurricanes, penetrate through the entire troposphere up to 15–18 km (Riehl 1954;
Palmen and Newton 1969), and PH, polar hurricanes, reach 5–6 km. It wouldn’t be a
big mistake if you neglect the thin sub-cloud layer and assumed that latent heat, i.e.,
condensation begins to act directly from the surface. Then the reduced acceleration
(9.12) can be rewritten as:

g′ = cT
�T

T
Bo−1, Bo−1 = μw

μa

L�e

pcp�T
= 0.614Ls

�e

T
, (9.13)

where the Bowen number Bo is the ratio of sensible and latent heat fluxes, and it is
accepted that p = ps = 1.013·105 Pa—average pressure at sea level.

From our parameters l and lc one can construct the square of the velocity (9.4)
and the area scale (9.5), which gives the formula for the kinetic energy of a hurricane
(9.8). Formulas (9.9–9.11) for the buoyancy flow are linearly proportional to thewind
speedU, and the velocity scale (9.4) is proportional to b1/2. This makes it possible to
express the speed following the thermodynamic disequilibrium between the ocean
and the atmosphere through the reduced force of gravity:

U ≈ 3g′l−1
c , (9.14)

where 3≈1.72 from (9.4). For Ts = 300K = 27°C, ΔT = 1K, r = 0.8, and θ =
20° latitude we get U = 34 m/s, typical speed in specifications. For PH at θ =
70°, Ts = 275K, r = 0.7, to get hurricane winds U ≥ 33 m/s, must have ΔΤ ≥
22 °C. These are temperature differences in good agreement with observations and
numerical experiments (Rasmussen and Turner 2003; Efimov et al. 2007). The latest
work reproduces a hurricane in the Black Sea western part on 09/25/2005, which
arose during ΔT ≈ 12 °C.

To describe the development of hurricanes, a theory of penetrating convection is
needed (Turner 1973; Zilitinkevich1987). The basic formula for the dependence of
the height h of the penetrating layer in a stable stratified atmosphere looks like:

h(t) = N−1(2bt)1/2, (9.15)

where N is the Brunt-Väisälä frequency, a characteristic of atmospheric stability,
defined as:
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N 2 = −g

ρ
	, 	 =

(
dρ

dz

)

a

− dρ

dz
,

(
dρ

dz

)

a

= −ρg

c2
, (9.16)

where c is the adiabatic speed of sound. Observations indicate that the hurricane is
in the tropics it can develop in a day, and in high latitudes—in a few hours, since
its upper limit is lower. Based on formulas (9.12) and (9.16), works (Golitsyn 2008,
2009) constructed graphs in coordinates ΔT and Ts for the necessary development
conditions for tropical hurricanes per day (Fig. 9.4) and 5.5 h in polar conditions
(Fig. 9.5). In addition to necessary conditions, we also need very diverse suffi-
cient conditions on wind shear with height, on the proximity of vertical thermal
and humidity gradient to adiabatic values and their homogeneity, etc., (Gray 1968;
Golitsyn 2008, 2009), otherwise condensation of water vapor may not occur. For all
this, there are not yet (and unlikely to be soon) the necessary measuring instruments
with the required vertical resolution. Therefore, we will not have to expect opera-
tional predictions of the emergence of new hurricanes tied to specific places for a
long time (if ever possible), although, when an object has already arisen, its further
evolution and trajectory are already predictable, and the accuracy of such forecasts
are improving.

In Fig. 9.1, 9.2, 9.3, 9.4 examples are presented of tropical and polar hurricanes
and a hurricane-like vortex over the Black Sea (see Munk et al. 2000; Rasmussen
and Turner 2003; Efimov et al., 2007). Nomograms for calculating the evolution
of hurricanes, where c is the adiabatic speed of sound. Observations indicate that a
tropical hurricane can develop in a day, and in high latitudes—in a few hours since
its upper limit is lower. Based on formulas (9.12) and (9.16), works (Golitsyn 2008,
2009) constructed graphs in coordinates ΔT and Ts for the necessary development
conditions of tropical hurricanes per day (Fig. 9.4) and 5.5 h in polar conditions
(Fig. 9.5).

Fig. 9.4 Nomogram for the
conditions for the onset of
development of a tropical
hurricane in one day before
reaching h = 18 km,
horizontally—ocean surface
temperature, vertically—the
difference in atmospheric
temperature at specific
humidity r = 80%. (Golitsyn
2008, 2009)
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Fig. 9.5 Nomogram for the
development of a polar
hurricane in 5.5 h. (Golitsyn
2008, 2009)

In addition to necessary conditions, we also need very diverse sufficient conditions
onwind shear with height, on the proximity of vertical thermal and humidity gradient
to adiabatic values and their homogeneity, etc. (Gray 1968; Golitsyn 2008, 2009),
otherwise, condensation of water vapor may not occur. For all this, there are not
yet (and unlikely to be soon) the necessary measuring instruments with the required
vertical resolution. Therefore, we will not have to expect operational predictions
of the emergence of new hurricanes tied to specific places for a long time (if ever
possible), although, when an object has already arisen, its further evolution and
trajectory are already predictable, and the accuracy of such forecasts are improving.

Figures 9.1, 9.2, 9.3, 9.4 give examples of tropical and polar hurricanes and a
hurricane-like vortexover theBlackSea (seeMunket al. 2000;Rasmussen andTurner
2003; Efimov et al. 2007). Nomograms for calculating the evolution of hurricanes
were first published in Golitsyn (2008, 2009) with a detailed discussion of their use.

The surface of the ocean in the absence of strong waves gives a remarkable picture
of spiral vortices, as shown in Fig. 13.8—marine satellite image surface area of about
a thousand km2 (cf. Figure 13.7). An analysis of the nature of these vortices is given
in Golitsyn (2012). The sea gives up its heat to the atmosphere when it is colder.
With winds up to 3 m/s, waves do not yet prevent the visibility of spiral vortices
from space. With such weak winds and temperature differences of several degrees,
the sum of sensible and latent heat released into the atmosphere will (Kitaygorodsky
1970; Fairall et al. 2003; Rasmussen and Turner 2003) be less than 100 W/m2. In
this case, the buoyancy flow in water is directed inward, and at water parameters, it
will be ≤ 5 10− 8 m2 s−3, which is five orders of magnitude less than in atmospheric
hurricanes.

At the same time, according to (9.4) the speed in water will be of the order
of 5 cm/s, and the diameter will be of the order of 5 km. Such vortices are never
observed in strip± 5° along the equator, which clearly confirms (Golitsyn 2012) their
hurricane-like hydrodynamic nature in water, in which the orders of magnitude are
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much different from those typical for air. Thus, the vortices of Fig. 9.3 can be called
micro-hurricanes on the sea surface. The uniformity of processes and phenomena in
nature is obvious.

9.3 Hurricane-Like Vortices

Hurricanes and specific hydrodynamic formations arise in the presence of rotation in
the system and energy sources in it. The latter leads to convection and rise of heated
volumes, and this causes convergence of surroundingmasses, which concentrates the
angular momentum introduced and associated with the general rotation of the Earth.
Vortices arise, the size and intensity of which depend on the sources of buoyancy b
and the properties of the medium.

The closest, fortunately, and rare, analog is fire tornadoes that occur during long-
term fires in large cities, as was the case in 1943 in Hamburg, and 1945 in Dresden
and Hiroshima. Calculations show (Andrianov et al. 2003) that a few hours after
the start of a fire, a cyclonic vortex with winds of up to 70 m/s and more is formed
with a large release of energy. Another example are vortices, which almost all have
a cyclonic rotation. They occur in the rear part of extensive thunderstorm mesocy-
clones with dimensions of the order of 100 km, where, according to Doppler radar
observations, downward movements exist. The mesocyclones themselves rotate as a
whole with angular speeds, 10 times faster than planetary rotation. There are several
reasons for downward movements: cooling of the upper boundaries of the clouds by
thermal radiation escaping into space, which gives negative buoyancy to descending
tornadoes along with raindrops, which, evaporating, also cool the air. The conver-
gence of ambient air into a tornado is uneven in height, the speed of the surrounding
air increases as it descends, which leads to compression of the jet (like water falling
from a faucet is compressed).

9.4 Energy of Tornadoes and Landspouts

As we have already mentioned Kolmogorov’s seminal work, “Random Motions,”
published in 1934, established a significant relation between random velocities and
the spatial extent of motion in natural events and phenomena. This groundbreaking
study was based on the Fokker–Planck–Kolmogorov equation, which describes the
probability distributions of a six-dimensional vector, p(t, ui, xi). The secondmoments
of this vector with respect to velocity and coordinates were later determined by
A.M. Obukhov in 1958 and further validated in subsequent studies. Building upon
Kolmogorov’s ideas, various natural processes and phenomena were elucidated in
a book, providing insights into the behavior of atmospheric vortices like tornadoes
and landspouts. By estimating the moments of these small-scale vortices, it becomes
feasible to calculate the rate of energy generation, denoted as ε:
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< u2(t) > = c1εt

< x2(t) > = S = c2εt
3 = r2 (9.17)

The expressions for these moments involve dimensionless constants, c1 and c2,
which are determined through theoretical and experimental comparisons to ascertain
the rates of kinetic energy generation per unit mass. These constants, assumed to be
of the order of unity, are crucial for understanding the dynamics of such phenomena.

Golitsyn et al. (2023) utilized empirical data from 164 tornadoes and landspouts in
Russia since the early twenty-first century. These eventswere documented by reliable
observers and included information on whirlwind intensity measured on the Fujita
scale and the maximumwidth of the whirlwind (horizontal sizeD of the vortex). The
diameters of these vortices range from 15 to 1750 m, with average velocities ranging
from 25 to 100 m/s (Fig. 9.6a) (Table 9.1). Assuming axial symmetry of the vortex,
the area S is calculated based on the vortex radius R and diameter D as: S = πD2/4.

The intensity of a whirlwind on the Fujita scale can be converted into a range
of horizontal wind velocity u typical for a specific tornado intensity. In the absence
of additional data, a standard average wind velocity is accepted for further analysis.
However, this may result in some variations compared to more precisely measured
parameters, such as the estimation of the forcing value of ε obtained from the
Eqs. (9.17) as: ε = < u > 3/S1/2

If the measurement errors are not known, all of these equations will produce the
same results. However, when the measurement errors are known, the above calcula-
tionswill yield a smaller error in estimating the forcing due to its lower power. For the
whirlwind sample being analyzed, the values of the forcing ε range from 7× 103 m2/
s3 (Fig. 9.6b, Table 9.2), which exceeds the typical value of 5 × 104 m2/s3 observed
in estimates within the Earth’s atmosphere by up to seven orders of magnitude. The
consistency of these estimates with common sense can be attributed to Kolmogorov’s
law of random motions. The characteristic estimates of insert variable] range from
0.4 to 23.5 s (Fig. 9.6c). It is worth noting that the median values of the characteristic
impact time t0 only changeweakly (by a factor of three, Table 9.2) when transitioning
from tornadoes of intensity F0 to tornadoes of intensity F4. The time t0 is closely
related to the time of vortex rotation around its axis, and the reciprocal value of t0
represents the vertical vorticity. It is higher for weaker vortices and relatively lower
for the most intense vortices.

Let t0 be the duration of the vortex’s impact on the environment, then:

t0 = (S/ < u >2
)1/2

(9.18)

We can calculate the final energy of an individual vortex by assuming that the
dimensionless constants с1 and с2 are approximately equal to unity, knowing the
height of the vortex, and multiplying Eqs. (9.17) by the mass of the atmospheric
column M. This allows us to estimate the kinetic energy E involved in the motion or,
more practically, in the destruction as E = Mε2t4.
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Fig. 9.6 Distribution of characteristics of tornadoes and lanspouts with respect to intensity on the
Fujita scale: a the maximum width of a whirlwind (diameterD), as well as b the forcing values (the
rates of energy generation) ε calculated in Golitsyn et al. (2023), c the characteristic time of impact
t0 = (S/ < u > 2)1/2 and d the typical energy E

Table 9.1 Sample of tornadoes and landspouts used in Golitsyn et al. (2023)

Intensity on the Fujita
scale

Speed range for this
intensity, m/s

Mean speed in the
range, m/s

Number of tornadoes of
a given intensity in the
sample

F0 18–32 25 21

Fl 33–50 41 66

F2 51–70 60 61

F3 71–92 81 13

F4 93–116 105 3
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Table 9.2 Median values of tornado characteristics for different intensities (Golitsyn et al. 2023)

Intensity on
the Fujita
scale

Forcing ε,
m2s−3

Characteristic
time t0, s

Tornado
energy E, J

Energy in
equivalent of
TNT, tons of
TNT

Tornado energy
E’ for a typical
size of a house,
J

F0 195.9 3.2 3.98 × I07 9.5 × 10–3 7.72 × 105

Fl 361.9 4.6 6.11 × 108 0.1 2.13 × 106

F2 477.9 7.5 7.35 × 109 1.8 3.60 × 106

F3 1199.4 5.5 1.29 × 101° 3.1 6.56 × 106

F4 1156.0 9.5 1.11 × 1011 26.4 1.10 × 107

The expression of the characteristic time of impact is given by Eq. (9.18), with a
height of 10mconsidered for the layer involved in the destruction, known as the Fujita
index. It should be noted that the strongest wind is typically observed in the lower
part of the tornado. In this case, the mass per unit area (М) is assumed to be 10 kg/
m2, which corresponds to a temperature close to 300 K. Based on these assumptions,
the calculated values for the energy (E) are on the order of 109 J (ranging from 107

to 1011 J) for the analyzed tornadoes (Fig. 9.6d). These values are eight orders of
magnitude lower than the typical energy values of tropical hurricanes.

If we express the energy of whirlwinds in terms of TNT equivalent, the median
values range from 9.5 kg TNT for F0 intensity tornadoes to 26.4 tons of TNT for
F4 intensity tornadoes (Table 9.2). Additionally, the characteristic values of energy
(E’) for the volume of 103m3, which is similar to the volume of rural structures most
frequently subjected to destruction, are estimated to be E’ = E × 100/S. The values
of E’ (the energy per unit area) vary from 4.4 × 103 to 3.18 × 108 J, increasing with
an increase in tornado intensity (Table 9.2).

It is important to emphasize that the approximations provided pertain to a height
of approximately 10m,where rural constructionswith a single-store are situated. The
velocities are indicated based on the Fujita scale, which corresponds to the extent of
destruction, with the highest speeds in tornadoes typically occurring near the surface
as indicated byGolitsyn et al. (2023). This phenomenon is a result of the conservation
of angular momentum, akin to water flowing out of a rotating faucet. In line with the
principle of conservation, the observed alteration in the stream’s diameter leads to an
escalation in its horizontal velocities. The dynamic interplay between the vortex and
the underlying surface significantly contributes to amplifying the surface wind speed
in a tornado. The computations enable the estimation of the correlation between the
width and duration of the vortex (expressed through the vortex path length) and
its intensity. The estimates of whirlwind energy we have derived can be utilized
for evaluating potential damage linked to tornado passage, including for adapting
to climate variations concerning the overall intensification of hazardous convective
phenomena observed in Russian regions (Golitsyn et al. 2023).
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Chapter 10
Size Distributions for Lakes and Rivers.
Flood Damage

10.1 Distributions for Rivers and Lakes

As in the previous sections, here there are many small rivers and lakes, but few large
ones. Their size and quantity reflect the relief of the earth’s surface; they should be
in its valleys and lowlands, and in what proportions began to become clear only in
the last quarter of the twentieth century, which is described in Chap. 8. Floods are
also closely related to topography (and precipitation), so it is natural to consider
all this in one point. The areas of lakes, of course, should depend on the level of
precipitation and processes of evaporation, which is determined by the climate of the
region. Size distributions for lakes and rivers are presented in Turcotte’s book (1997)
in figures 8.3 and 8.4. They are well described thereby power laws. For rivers, the
cumulative length distribution N (≥ l) proportionally l−n, where n = 1.9, and for
lakes cumulative distribution by area

N (≥ S) ∝ S−n, n = 0.95, (10.1)

and according to the average linear size, defined as S1/2 corresponding to the indicator
is also 1.9 (cf. Chap. 8). Equality of indicators in cumulative distributions for river
lengths and average linear size of lakes indicates the unambiguous role of relief in
determining these distributions: in both cases, the catchment areas, their distributions
according to sizes. A slight difference in the exponent in the distribution of lakes
by area from one, or two for river lengths, may characterize some increased role
of large-scale processes (or faster erosion of small areas, for example, due to faster
evaporation of small and shallow lakes) compared to the purely “white noise” of
processes that form the relief (see Sect. 1.3). If n = 2 or 1, then these are purely
Kolmogorov, not processed purely by the nature distribution of ANK34.

Ryanzhin (2005) also calculated the cumulative distribution functions of the
number of lakes by area. The areas were normalized to 386,400 km2, the area of
the largest lake—the Caspian Sea in 1980. The exponent of the cumulative number
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of lakes depending on their normalized area was found to be 0.925, one-four less
than given above. The Ryanzhin database includes 8.65× 106 lakes with area≥ 1 ha
= 104 m2 = 10−2 km2, which is twice as much as in Turcotte (1997). The increased
number of small lakes leads to a slight decrease in this indicator.

Let’s try to give a physical meaning to these power laws. First of all, about the
accuracy of determining the value of the exponent using empirical data. It is deter-
mined by the least squares method for deviations of the number of objects from
the power law dependence. The correlation coefficient, r, of this number with the
specified dependence must be the greatest, which determines the value exponent n.
The dependence r = r(n) usually has a very blunt maximum, i.e., a large radius
of curvature, therefore values of n close to n = 2 can also approximate the desired
statistical pattern quite well. Unfortunately, authors of scientific articles seldom give
statistical limits depending on the size of the base and the degree of connection (this
is determined by the number of degrees of freedom in the random series under study),
in which the value of the exponent n in power distributions should be located with
a given degree of probability. Therefore, to simplify the interpretation of formula
(10.1), we can first approximately assume n = 0.95 ≈ 1, in accordance with Sect. 1.
3 and Chap. 8, where for a spatial spectrum of relief n = 2.

Most rivers and lakes in themiddle andhigh latitudes ofEurope andNorthAmerica
were formed after the melting of ice sheets that formed the topography of the earth’s
surface over the last million years. In Asia and other continents, the relief was formed
by tectonic processes and erosion, and there the role of glaciers is not clearly iden-
tified. Therefore, the number of lakes at present should be viewed as the number of
events, and processes that led to their appearance, for some characteristic period.
Just to be certain, let’s take ten thousand years for such a period, the moment when
the last ice sheets of North America and Fennoscandia disappeared, T ≈104 years
= 3 1011 s. Then we must assume that the value of the cumulative distribution of the
number of lakes over areas N (≥ S) belongs to this period, i.e., has the dimension of
inverse time or frequency T −1. In this case, we will write formula (10.1) as equality
for n = 1:

N (≥ S) = DS−1, (10.2)

where the factor D has the dimension of the diffusion coefficient. According to the
data Fig. 8.4 from Turcotte’s book at n = 2 the value of the coefficient D turns out to
be of the order of 103 km2/year, i.e., 30 m2/s, which refers to the area of all lakes in
the world. This value can be interpreted as the coefficient of broadening of the total
area of lakes. It should be considered an upper estimate since many lakes are older.

Ryanzhin (2005) in his database has volumes for several thousand lakes. For them,
the dependence of the volume of lakes on their area was determined:

V = S−n, n = 1.137. (10.3)

The similarity parameter can be selected Π= S1/2/h, where h is the average depth
of the lake. If the similarity parameter (10.3) was the same for all lakes, then the
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exponent n should have been equal to 3/2, but here we must write:

V = S3/2f1(�), (10.4)

where is the function f 1 (Π) must be proportional Π−0.363, so that formula (10.3) is
satisfied. Note that formula (10.3) characterizes a typical fractal dependence, similar
to the dependence of the length of the coast of Great Britain on the size of the
measurement unit found by Richardson. Examples of such dependencies are given in
Turcotte (1997) forNorway,Australia and other areas. Such dependencies do not lend
themselves to simple physical interpretations (or, in the spirit of B02, their numerical
coefficients depend on several similarity parameters in the form of intermediate
asymptotics).

We see that formula (10.2) is a formula of the general type (1.31). This is a typical
formula for the Brownian process, when a particle is acted upon by random impulses,
the correlation time of which is much less than the reaction time of the system, and
then the time correlation function of the impulse action process can be represented as
a delta function of time, energy whose spectrum is frequency white noise intensity
2σ 2

v τo = D, where σ 2
v —dispersion of the impulse process, τo—internal time of

this process. In such interpretation, for the area S we take the area covered by the
trajectory of the Brownian particle during the time τ = τo ≥ (S). The reciprocal of
such time will be the cumulative frequency N (≥ S) according to Sect. 1.3.

It is necessary to conclude this section by noting that the energy spectrum of the
surface relief, described in Chap. 8, for regional sections is proportional to k−2, where
k = 2π/l—wave number, l—wavelength of the spatial harmonic. The dependence of
the spherical harmonics of the spatial relief of the earth’s surface on the number of
these harmonics is similar, Chap. 8. There is an obvious connection between these
results and statistical properties of the earth’s relief with the results outlined in this
paragraph: the number of depressions in the relief, depending on their size l, should
fall with height l, like l−2 = S−1, i.e., the larger the area, the smaller the number of
such lakes. From here N (≥ l) ~ l−2 ~ S−1.

10.2 Number of Floods in Dependence on Their Damage
Values

Figure 10.1 from the book of Smith and Ward (1998), shows the cumulative number
of cases (about 100) of floods depending on the damage, U. With a coefficient of
determination close to 0.7, a cumulative dependence was drawn there,

N (≥ Y ) ∝ Y−n, n = 0.65, (10.5)

i.e., the greater the damage, the smaller the number of such cases to a degree close
to 2/3.
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Fig. 10.1 Cumulative distribution of the number of floods versus their damage (Smith and Ward
1998)

Damage can be assessed by the flooded area, depending on its topography, and
the volume of precipitation is a random variable:

V = pτS0, (10.6)

where p is the average intensity of precipitation during the time of its occurrence τ
over the river catchment area So (or part of it). The hypothesis naturally arises that
the exponent in (10.6) is determined by the relationship between area and volume,
as is the case for the cases of cumulative distributions of the number of earthquakes
and volcanic eruptions (see Chap. 3).

Heavy and prolonged precipitation is a process that, fortunately, is quite rare
and irregular for each specific area. The process of rain formation itself is very
complex and depends on many factors. It is known (Palmen and Newton 1973)
that the temporal and spatial correlation radii for precipitation are almost an order of
magnitude smaller than for other synoptic processes. This serves as a basis for consid-
ering the processes leading to the formation of precipitation to be delta-correlated in
time. Then the general theory of such processes, set out in Sect. 1.3, gives that the
precipitation itself must be cumulatively distributed over their volume as follows:

N (≥ V ) ∼ AV−1, (10.7)

where N (≥ V )—number of cases over a certain period (for example, a century) with
the volume of precipitation ≥ V, A—quantity with dimension VT−1, where V is the
dimension of volume, T is time, i.e. A is the rate of precipitation generation. It can
only be determined from observational data.

We will consider the damage, Y, proportional to the volume of precipitation:
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Y = αV , (10.8)

where α—proportionality coefficient with dimension equal to [α] = УV−1, where
У—the amount of damage, for example, in money. We estimate the flood area as

Sy = hβ−1L, (10.9)

where h is the depth of flooding, proportional to the amount of precipitation, h =
h (V ), β—the average angle of the side slope of the river valley, L—length of the
flooded valley, proportional value h/β1, where β1—slope coefficient for river flow.

Specific damage per unit area (with average watershed exploitation terrain)
on average will be proportional to the depth of flooding with the coefficient
proportionality α1, with dimension [α1] = УL−3.

y = α1h. (10.10)

Now we estimate the volume of water flooding the area, taking into account
(10.10) as:

γV = hSy = ySy/α1 = V /α1, (10.11)

where γ is the coefficient of water loss from its evaporation and seepage into the soil,
which is further omitted for simplicity. Considering (10.9) and the remark that on
average L ∝ h/β1, we find from (10.11) the volume of water in the form:

V ∼ hSy ∼ α1h
3/ββ1. (10.12)

The area and damage are thus determined by geomorphological parameter—
the average product of the angles of the lateral slope and the slope of the valley
ββ1. It varies for different regions and serves as a natural parameter set by external
conditions.Using formulas (10.8) and (10.12), it is also expressed through the internal
variables of the problem as:

(ββ1)
−1/3 = h−1(y/α1)

1/3 = �1, (10.13)

which can serve as a natural similarity parameter for river floods.
The general theory, Sect. 1.2, for cases of weakly correlated influences, gives

dependence (10.7) for the cumulative distribution of the number of precipitation
events with volume≥ V. Let us rewrite it for damage considering (10.8) dependence
У (V):

N (≥ y) = c(�1)αy
−1, (10.14)
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where for the numerical proportionality coefficient c(Π1), as in cases of earthquakes
and volcanoes, it turns out to be possible to depend on the parameter similarities Π1

in (10.13).
With increasing damage valuesУB in (10.13), other things being equal, our param-

eter similarities Π1 also grows, and with small damages—as У1/3. Numerical coeffi-
cient in (10.14), c(Π1), for small Π1 can be expanded near zero in a Maclaurin series
c = co + c1Π1. Constant coefficient co here must be equal to zero, since no precipita-
tion and no flooding, i.e., no damage. At c1 �= 0 now the general ratio (10.14) taking
into account (10.13) gives:

N (≥ Y ) ∝ V−2/3, (10.15)

in good agreement with empirics (10.5). This relationship can be understood as
follows: that it reflects the relationship between damage in the flooded area and
volume of precipitation: the larger this volume, the larger the area, the greater the
damage and, namely, in the proportion given by the last formula. When deriving this
formula, it was the same technique of expansion of the unknown function from the
similarity parameter is used, as was the case in the Monin–Obukhov theory МY65
for a stratified boundary layer, as in the derivation of the cumulative distribution
function for the frequency of earthquakes and volcanic eruptions in Chap. 3.

An additional relation to this subparagraph is the statistical connection between
the maximum water flow module during flood qp and the catchment area of river
A, given in Robinson and Sivapalan (1997): qp = KAθ, where θ = − 0.33. This
dependence is statistical in nature with a coefficient of determination of about 0.9.
The modulus of water flow in a river is the ratio of flow q to the catchment area A,
so the latter relation can be written as:

qmax = kA2/3. (10.16)

Having graphs of frequency probability distributions for individual rivers, the
inverse value of the distribution of the function qmax can be represented as a
cumulative probability, namely frequency N (≥ qmax). Then formula (10.16) will
give:

N (≥ qmax) = k−1A−2/3. (10.17)

Let us note that both of the last two formulas obey the first formula (1.34), in
which the cumulative distribution of the quantity α is inversely proportional to the
quantity itself α, for which the distribution is sought. This explains the indicators
in Sect. 10.3 in formulas (10.18) and (10.19) and shows greater generality for the
processes spill, expressed (10.15)–(10.17). In all these formulas the exponent b is
close to 2/3.

The damage in (10.15) is related to the severity of the flood, which depends on the
catchment area. Thus, (10.17) serves as a justification for the cumulative dependence
of the number of cases of damage on the magnitude of the damage itself. Simply, the
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damage is determined by the total volume of precipitation that falls on the area, and
the dimension of this area is equal to V 2/3, i.e., the area of the spill is thus related to
the volume of precipitation.

10.3 Statistics of Numbers of Mud Mushrooms
on the Ocean Surface Near the River Mouths

Physically similar patterns are shown by the statistics of mushrooms (plumes), and
areas of the sea surface occupied by turbid river runoff. They are clearly visible on
satellite images, and even with the naked eye from the window of an airplane flying
along the coast. Their good statistics are given and analyzed in Warwick and Fond
(2004). Cumulative distributions have a power-law form over a wide intervals scale:

P = cAb, (10.18)

N (≥ P) = aP−β, (10.19)

where P is the area of the mushroom on the water surface, A is the catchment area of
the corresponding river, α and c are coefficients. For mushrooms from seven rivers
in Morocco b = 0.60 ± 0.09 with the coefficient of determination r2 = 0.89 in the
range of their catchment areas from 21 to 1100 km2. Data on 110 rivers are also
provided inWarwick and Fond (2004) for California, flowing into the Pacific Ocean.
In the range of their catchment areas from 1 to 230 km2 a meaning has been found
for them b = 0.63 ± 0.15 at r2 = 0.63.

Greater variation for California’s small rivers is evident due to the diversity of
their drainage conditions in the state’s coastal mountains. For large rivers of theworld
with catchments of 10 to 107 km2 (the last figure refers to Amazon) magnitude b
= 0.70 with r2 = 0.94, according to Warwick and Fond (2004). The closeness of b
values to the 2/3 indicator in formula (10.5) demonstrates the relationship between
the volume of precipitation in catchment areas and their areas.

The number of mushrooms themselves off the coast of California depending on
their area, and their cumulative distribution, follows the formula (10.19) with the
value β = 1.02 ± 0.03. This is in excellent agreement with our theoretical formula
(1.31), where β = 1, for the cumulative number of events given in Sect. 1.3, which
describes the results of A.N. Kolmogorov for random movements and their conse-
quences, in which there is no dependence on the function of any dimensionless
parameter, and clearly follows the results of ANK34. Thus, all the results of this
section are determined by the relationships between the areas of watersheds and the
volume of precipitation on them. A more complete summary of this material can be
found in Golitsyn (2018, 2024).
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Chapter 11
Additions and Comments to Previous
Sections

The material presented here, and its understanding were formed by the first author
over many years. The main thoughts were about the essence of these results and how
they add up to the overall picture of nature. Give a general idea of the ones discussed
here processes was my need, and I hope this picture will be interesting and useful for
other researchers as well. Nowadays, scientists are working on some very specific
topics, which are just small parts of the entire universe.

The first part of the additions concerns the rule for the fastest response of natural
systems to external influences, which came to mind in the late 1970s in connection
with studies of convection and atmospheric circulation. The second part, which has
occupied almost the entire scientific life of the first author, is how and why in statis-
tical characteristics, such as spectra or structure functions, third parts of powers of
natural numbers occur so often and in a variety of ways. In the third part, several
cases are mentioned, briefly describing examples of the consequences of the laws of
Kolmogorov 1934 for cumulative distributions.

11.1 The Rule of the Fastest Response to the External
Forcings

When considering most natural physical processes and phenomena, we, as a rule,
know the power of energy supplied to them, called forcing. If we somehow know how
to estimate the reaction time to this “forcing,” then their product gives us the acquired
energy of the process. It turns out that if the system under consideration has several
time scales, then the response to the impact occurs within the shortest time. This
statement arose from the analysis of several processes. Its complete justification is
obvious for linear systems of ordinary differential equations of order higher than the
first when there are several different magnitude increments, but the largest increment
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acts, and this corresponds to the shortest reaction time. It turns out, G12, that reaction
times can be found from similarity criteria for the processes being studied.

Consider the Reynolds number Re = UL/ν, Where U—speed flow, L is its linear
scale, and ν is kinematic viscosity. Let’s multiply and divide this number by L and
introduce a dynamic time scale τd = L/U and the viscous scale is 2 L/τν = L2/v.
Then our similarity criterion will be presented as the ratio of two time scales:

Re = τν/τd .

If the Reynolds number is much greater than one, then this means that τd << τv.
In this case, one must keep in mind the existence of a critical Reynolds number
O(103), to which the situation under consideration should be attributed. If we know
forcing—ε, the rate of generation (and dissipation in the statistical equilibrium case)
by unit mass, then the kinetic energy is estimated as:

U 2 ∼ ετd = εL/U .

This relation, up to a numerical coefficient and sign, is reduced to the expression
for the third moment of velocity in Kolmogorov’s “law—4/5” (see Sect. 2.1): <

U 3
1 >= −4/5Uεr, and it also reveals the “2/3 law” for the structure function.
If we are dealing with a small scale, so, Re ≤ 1, That τv ≤ τd ., and then

U 2 ∼ ετv = (ε/v)L2.

And again, up to a numerical coefficient, this is the formula Kolmogorov for the
structure function of velocity in the scale domain, smaller than the internal viscous
scale of turbulence (Sect. 2.1).

There are examples when Re << 1, which can be on a small scale or very high
viscosities, such as in the Earth’s mantle, where the viscosity ν = 1017 m2/s. The
lowest velocities of terrestrial natural processes are the speeds of convective move-
ments in the mantle. The earth’s crust is a few hundred kilometers thick continent to a
few kilometers near mid-ocean ridges, from which mantle material with a volume of
about 3 km3 per year emerges. Convection in the mantle is spatially inhomogeneous;
it contains inhomogeneous ascending plumes of mantle matter that tear the earth’s
crust into lithospheric plates. The relative velocities of these plates are observed by
GPS and GLONASS systems from 1 up to 18 cm/year. The Pacific Nazca plate has
the highest speed, and on average they are about 5 cm/year.

Let us turn to the earth’s mantle, which under the lithosphere occupies a depth of
up to 3000 km, and below is a liquid core, the fluid speeds of which are estimated at 5
km/year, which is consistent with the drift of some components of the geomagnetic
field, and such speeds are sufficient for a geomagnetic dynamo (Golitsyn 2008).
Total geothermal flux from the earth’s interior W consists of its average density in
86 × 10−3 W/m2 and total area of the earth in 510 × 106 km2 = 5.1 × 1014 m2,
where the total power W = 86 × 10−3 W/m2 × 5.1 × 1014 m2 = 4.4 × 1013 W. The
term ε is the rate of energy generation/dissipation per unit masses. The total mass
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of the planet M = gr2/G, where G−1 = 1.5 × 1010 kg s2/m3—reverse the value of
the gravitational constant. Substituting terrestrial parameters into it, g = 10 m/s2, r
= 6370 km, received M⊕ = 6 × 1024 kg, which coincides with ~ 1% accuracy with
astronomical mass of our planet.

The mass of mantle material, extending up to 3000 km deep, we estimate at
4 × 1024 kg, from where the forcing for the entire mass will be 4.4 × 1013 × 5 ×
10−4 = 2.2 × 1010 W, where is the multiplier 5 × 10−4—an estimate of the share
of the total flow heat used to generate geodynamics and seismic processes. From
here to unit of mass, i.e., ε = W/M · (

2.2 × 1010/4 × 1024
) ≈ 5.5 × 10−15m2/s3.

Time τv = L2/ν = 9 × 1012/1017 = 10−4 second. This time does not physically
correspond to anything, but let us accept it as formal asymptotic consequence for a
viscous time in the mantle at L = 3 × 106 m and viscosity ν = 1017 m2/s.

Then: U = (2ετv)
1/2 ≈ (

2 × 5.5 × 10−15 × 10−4
)1/2 ≈ 10−9m/s = 10−7cm/s

For 1 year = 3 × 107s, then the speed we obtained is 10−7 cm/s 3 × 107 cm/
year will be 3 cm/year. The authors did not expect to obtain such agreement with the
average estimated by GPS a value of 5 cm/year.

Our order-of-magnitude estimate of the mass of mantle matter may turn out to
be overestimated. If you take it 3 × 1024 kg, then the speed will be 3.55 cm/year,
in addition, ~ 3% adds exact value 1 year = 3.16 × 107 s, generally 4 cm/year.
However, such clarifications are unnecessary. Estimation of velocities and cumulative
distribution of lithospheric plates across areas indicate the reality of the magma
parameters used and the energy cycle of geodynamics and seismic.

The authors have repeatedly heard that such unimaginably low speeds are impos-
sible to imagine. But this is the speed at which our nails grow. In the year 52 weeks,
and a week or two the nails grow by about a millimeter, i.e., 3–5 cm/year. In 1995, the
first author presented his results on earthquakes at Cambridge University. A well-
known specialist who attended the seminar in geodynamics Prof. Dan McKenzie
said that he gave the speed comparison with nail growth back in the 1980s. Prof
G. Golitsyn apologized that he didn’t know this and came up with it himself in the
1990s. After that, McKenzie called him to a famous pub in the city, and they drank
beer at the table where sat Watson and Crick, who discovered 40 years earlier, the
DNA double helix structure.

A non-trivial example here is provided by the general circulation of the atmo-
sphere slowly rotating Earth, Mars, Venus, and Titan, the satellite of Saturn. The first
author have brought out in 1970, using considerations from similarity theory and
dimensionality, the formula for kinetic energy of the atmosphere in the form:

K = σ 1/8q7/8c−1/2
p r3.

Remembering the Stefan–Boltzmann radiation law q = σT 4
e , Where Te—

effective temperature of outgoing thermal radiation arriving at the planet’s disk,
πgr2 = Q„ where (cpTe)1/2 is of the order of the speed of sound in the atmosphere,
then the formula for kinetic energy can be reduced to the following form K = Qτe,
where Q = πr2q, the arrival of energy to the disk,
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τe ≈ r/ce ≈ r
(
cpTe

)−1/2

τe—time establishing local thermodynamic equilibrium in the atmosphere with
characteristic horizontal size—planet radius r. This time—the smallest for macro-
processes in the atmosphere. This example was initiated for the “rule of the fastest
reaction”, the actions of which were also revealed in other processes with external
influence. For rapidly rotating planets the numerical coefficient will be a function of
the square of the rotational Mach number M = ωr/c. In the case of Jupiter, where
the American probe Galileo descended into its atmosphere up to pressures of 20 atm.,
recorded speeds of 100–200 m/s in complete agreement with G12, where a speed
estimate as 130 m/s is given.

A new and characteristic example of the rule is convection. This has two similarity
parameter—Rayleigh and Prandtl numbers:

Ra = αg	Th3

kv
, Pr = v

k
.

The Grashof number is used simultaneously with the Rayleigh number:

Gr = αg	Th3

v2
= Ra

Pr
.

They both can be represented as the ratio of the squares of two times:

τv = h2/v, τg′ = (
h/g′)1/2,

where g′ = αg	T—gravity reduced in one way or another, α = 1/T . For an ideal
gas, its compressibility coefficient (Charles’ law—I remember from school), for other
substances this is a specific thermodynamic quantity. Then:

Gr = τ 2
v

τ 2
g′

, Ra = τvτk

τ 2
g′

, τk = h2

k
, τv = h2

v

and at Pr ~ 1 both Rayleigh and Grashof numbers are of the same order. Since
convection is excited when these critical numbers reach values of the order of
many hundreds, then they must be attributed to Ra/Racr for selection last time. The
excitation of movements gives the buoyancy flux density: f = αgf /ρcp.

A non-standard example of the operation of the “fastest reaction rule” is given
by the current water in pipes. Consider a pipe with radius α and length l with liquid
density ρ and dynamic viscosity μ. The pressure is set at its ends p1 − p2 = δp > 0,
i.e. there is a pressure gradient i = δp/l. From these parameters it is compiled
dimensionless quantity—Reynolds number:

Re = ρua

μ
,
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where u is the flow velocity, which itself must be determined.
Non-standard of this example is that the pressure gradient i = δp/l doesn’t have

dimensions of power, but the term iS = π Iα2 has the dimension of acceleration
of every pillar in the pipe. But representing the Reynolds number as a ratio of two
times, viscous and inertial, allows you to reduce the number of dimensional parame-
ters, omitting either density or viscosity. Considerations dimensions are given in the
general case:

u = (ia/ρ)1/2f (Re).

For small numbers Re << 1 the density that determines the forces is insignificant
inertia, and then:

u = c1ia
2/μ,

where c1 is a numerical coefficient. For average pipe flow rate

Q = uS = c1πa
4/μ.

The problem of the laminar velocity profile in a pipe was solved analytically in
1840 by Poiseuille. The exact solution gives that c1 = 1/ 8.

At large Re >> 1 in the zeroth approximation, viscosity can be neglected, and then
the remaining parameters will give:

u =
(
ia

ρ

)1/2

, Q = c2π

(
i

ρ

)1/2

a5/2,

where the coefficient c2 is a slow function of the Reynolds number given by experi-
mentally, and the exponent of the radius does not exceed 2.7, which is much weaker
α4 for laminar flows. There is a slight non-self-similarity here. Reynolds number of
the form Re = τv/τα , where τv = ρα2/μ, acts correctly when Re << 1, and when
τα =< u > /α, i.e. Re >> 1 acts approximately, maintaining a weak dependence in
resistance coefficient:

c2(Re) = i
(
ρu2/2a

)−1 = 2aδp

lpu2
,

which at Re << 1 equals:

cD = 2μ2/iρa3 = 2ρv2/ia3,

and when Re >> 1 the coefficient resistance cD = const (Re).
This is the situation that Barenblatt has been warning about for about half a

century, that the case when the exact value of some similarity parameter can be
neglected and some external parameter included in it—rather an exception than the
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rule, and that the dependence, albeit weak, can persist over the entire interval the
existence of similarity criteria (see his book B02). The differences from classical
results are small but can be revealed in experiments.

11.2 The Nature of Third Powers of Exponents
in Statistical Laws Natural Processes

1. Already in the 1950s,Golitsyn heard that “the laws of all thirds” operate in nature,
although at that time the “laws of 2/3 and – 5/3” for structural functions and
spectra of velocities and passive impurities, “4/3 laws” for pressure fluctuations
and the turbulent mixing coefficient. In the spirit of this book, one might say, that
this is the action of the “rule of the fastest reaction”: we know the forcing, i.e.,
the reported power ε into the system, and the only reaction time of such a system
of size r is:

τ = (
r2/ε

)1/3
. (11.1)

The passive scalar θ is described in the same way, for which the average is intro-
duced square of its concentration fluctuations � = 〈

θ2
〉
and the rate of its generation

and dissipation dΘ/dt, and multiplying it by time (11.1) makes it possible to obtain
structure function for a scalar, and then its spectrum k−5/3, since passive the scalar
does not introduce a new time scale.

2. Around the 1940s, the law of earthquake recurrence, EQ, entered science,—
Gutenberg Richter law, G–R. For the cumulative number of events with
magnitude m, it says (see Chap. 3)

lgN (≥ m) = a − b lgm, (11.2)

where α is a constant specific to the region and time of observation. In a sedate form:

N (≥ m) = a1m
−b, a1 = 10a (11.3)

where b ≈ 2/3 for m ≤ 7.5 away from the mid-ocean ridges and turns into b ≈1 V
depending on the value of the main similarity parameter for the EQ, Chap. 3:

� = L

h

(
M

	σ

)1/3

h−1, (11.4)

where M is the seismic moment, volumetric characteristic, L is the length of the
rupture during the earthquake, h—is the thickness of the cortex at the site of the EQ.
When Π < 1, b ≈ 2/3, and for Π > 1, b ≈1. Thus, when a crustal rupture of length L
exceeds the thickness of the crust, then all the energy in the volume of the EQ leads
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to G–R in the form N (≥ m) = −αm−1, otherwise N (≥ m) = −αm−2/3. Here one
should remember the concept of the EQ volume, defined as:

V = M /	σ, (11.5)

where 	σ is the stress in the crust per event, and what is between magnitude and
moment there is an approximate statistical relationship:

m = 2

3
lgM − 6. (11.6)

It follows that the magnitude is related to the surface of the crustal rupture, and the
moment is related to the volume of the environment in which EQ occurs. There is a
magnitude log(S/So), where the S—area ruptures during EQ, So ≈100 m2, reference
area at m = 0. A similar situation we saw between the volume of precipitation and
the area of flooding in Chap. 10.

The G–R law in the form N (≥ m) ~ m−b is the cumulative distribution of the
number of events and b = 1 is the standard view for such events: N(≥ E) ~ E−1,
when all the energy E is spent on the implementation of an event (see also Chap. 1).

This form of cumulative distribution with the dimension of inverse time follows
from relations of Kolmogorov < u2 >∼ εt in the understanding that u2 there is
energy per unit mass, when there are no geometric restrictions. Intra-crustal zones
described by area and rock fragmentation near the rupture during the shift of the areas
of the cortex adjacent to the rupture and excitation seismic waves, characterized by
the similarity parameter Π from (11.4), are spent on the consequences we perceive
are the energy of volume (11.5) to a lesser extent than for Π > 1, and therefore they
occur more often for Π < 1 than in cases for Π > 1 when the entire volume of EQ is
implemented according to (11.5). To put it bluntly and simply, the surface (by size)
by its dimension:

S ∼ V 2/3. (11.7)

In the case of the spectrum of cosmic rays (Chap. 4), the number of their particles
per unit time per unit area, to estimate the latter we use their volumetric density
energy, i.e., relations (11.7). As a result, the integral spectrum of cosmic energy rays
is proportional to E−5/3. Two other examples of “thirds” are in Sect. 11.3.
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11.3 Cumulative Area Distributions

11.3.1 Distribution of Lithospheric Plates by Size

In 2003, Bird’s article (2003) appeared with the areas of 52 lithospheric plates. If
exclude from this list the 6 largest: Pacific, 2.6 steradians in size, African, 1.44,
Antarctic—1.43, North American—1.37, Eurasian—1.20, South American—1.03,
and 4 smallest and poorly determined plates, then the cumulative number of the
remaining 42 plates is approximated depending on the area S as:

N (≥ S) = 7S−0.33, (11.8)

which is shown in Fig. 11.1.
The dimensions of the areas S are given in steradians, the area earth’s surface 510

million square meters, constituting 4π steradians. With average radius of the Earth r
= 6371 km area r2 = 40.6 million sq. km. For comparison area of our Russia 17.1 ×
106 km2, which is 1/30 of the total earth’s surface.

Recall that the areal scale in the Kolmogorov random distribution (1.33):

〈
x2

〉 = εt3, (11.9)

that in dimension and meaning the left side can be equated to the area S. Then
cumulative distribution over areas having the dimension of the inverse time, will,
according to Chap. 1:

Fig. 11.1 The Cumulative plate count as a function of the area in steradians Gostintsev and Fortov
(2007)
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N (≥ S) =
( ε

S

)1/3
C1, (11.10)

where C1 is a numerical coefficient determined by comparing the last formula with
empirical (11.8), which we will do, neglecting the difference between 0.33 and 1/3.
This gives:

C1 = 7ε−1/3. (11.11)

The rate of energy generation per unit mass was estimated in Chap. 3 for the quan-
tity convection in the mantle, leading to the generation of elastic energy in the earth’s
crust, permitted during the EQ process. This value ε ≈ 110−11 m2/s3 (Golitsyn
2007). However, in approximation (11.8) and Fig. 11.1 the area is in steradians.
Therefore, substituting this ε value into (11.11), we get C1 = 0.945 ≈ 1, i.e.

N (≥ S) = (ε/S)1/3.

In the author’s scientific practice an unfortunate mistake was made (corrected
in Golitsyn 2017): in the first article (Golitsyn 2008) the rate energy dissipation
in the mantle, value ε, was used in units of cm2/s3 a comparison with the empirical
formula (11.8), where the areas are in steradians.As a result, the numerical coefficient
C1 in (11.10) meaninglessly turned out to be about 3500. Such large numerical
coefficients should always be alarming if you follow Albert Einstein’s warning that
in dimensionally correct formulas when comparing them with data, the numerical
coefficients should not be very small, nor very large (quoted from the book BPW,
chapter 8). At the end of the 2000s, the author did not yet remember the results
of Kolmogorov in 1934 and their use in 1959 by Obukhov, therefore, based on
analogies of the manifestation of traits of small-scale turbulence in flows of crushed
ice in glaciers, relative movements in a mass of small balls in closed volumes, in G12
there was formula (11.3) was proposed. However, not being sure of the correctness of
such considerations, the author tested experimentally the possibility of implementing
similar cumulative distributions of the number of areas proportional to S−1/3 by using
checkered paper to measure areas.

Three sheets of paper were drawn without looking at them by three persons, and
then, in given area intervals, the number of polygons falling into specified intervals.
In addition to the two or three largest intervals in terms of area, the number of areas
in other intervals are smaller over approximately an order of magnitude values little
contradicted the dependence N (≥ S) = (ε/S)1/3. To this, they objected to me, that
the paper is flat, and the planet is spherical. The same results were then obtained with
shells of randomly crushed eaten eggs (a rare case of using such eggs). These results
are shown in Figs. 11.2 and 11.3. A detailed presentation of this point is contained
Golitsyn (2008, 2017).



116 11 Additions and Comments to Previous Sections

Fig. 11.2 Cumulative
distribution by area of the
number of polygons during
random drawing of G12
paper

Fig. 11.3 Cumulative
distribution of masses of
nearby galaxies

11.3.2 Distribution of Galaxy Masses

Figure 11.1 shows the cumulative distribution over the masses of those closest to us
galaxies selected within 10 million light years and taken from the book by Surdin
(2013). In Fig. 11.4 (not published), the case of 25 objects is shown as their number
N (≥ M) along with an inclined line proportional to M−1/3. This pattern can be
understood from the following considerations.

Fig. 11.4 Cumulative area
distribution of G12 eggshells
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The considered galaxies are disk-shaped with disk area S. For example, the Milky
Way has a thickness of 200 parsecs (pc), i.e., about 6 × 1018 m, and a radius of
15,000 pc, 75 times more. Assuming that their masses are uniform along the radius,
we can estimateM = ρHS, where ρH—is the average density of galactic matter per
unit area. We will consider the time of formation of the object to be the time the
substance falls to the center of the disk (Surdin 2013):

t = (ρHG)−1/2,

where G = 0.667210−10 = m3 s−2 kg−1—gravitational constant. It’s time to order
several hundred million years for large volumes like our Milky Way (Surdin 2013).
Then the diffusion coefficient in the Fokker–Planck–Kolmogorov equation inChap. 1
can be estimated as:

εg = ρHε,

which gives a conclusion similar to (11.10):

N (≥ M ) = C
(
εg/M

)1/3
, (11.12)

whereC is a dimensionless coefficient to be determined from comparisonwith obser-
vational data, depending, obviously, on the size and homogeneity of the sample.
The last statement means that the spread in the number of objects in each of the
adjacent logarithmic mass intervals by several orders of magnitude. The common
origin of cumulative dependencies is Kolmogorov probability law (4.2) in the form
< x2 >= εt3 = r2 ≈ S. To derive a relation (11.12), it is sufficient to assume that
the galaxy mass is proportional to its area.

Constructing such cumulative distribution, one should remember that at large N
its logarithm increases much slower than M1/3 or any power of M. This obstacle
could be met in practice when considering 80 swarf galaxies.

11.4 Energy Distribution of Objects Colliding
with the Earth

According to the processing of observational data (Werner et al. 2002), the logarithm
of the cumulative number of objects colliding with the Earth per year depends on
their energy E as:

lgN (≥ E) = a − b lgE,
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where α= 0.568 ± 0.015, b = 0.90 ± 0.03, E in kilotons of TNT, 1 kt = 4.2 × 1012

J. Note that this notation is close to the Gutenberg–Richter law for earthquakes, and
the difference of b by 0.1 from unity shows that objects with high energy and mass
Due to gravity, they are lost more often than small ones. This is a case of incomplete
self-similarity according to the terminology of Barenblatt [Btt03, B09], when in the
formula for the number of events

N (≥ E) = c(�)/E

the numerical coefficient c begins to depend on the similarity parameterΠ, for which
you can choose, for example, Π(G, E, M, p), where G is the gravitational constant,
S is the area of the planet’s disk, M is the mass of the planet. Then to explain the
observations there must be c(Π) ~ Π−0.1.

Assuming that the released energy is proportional to the volume of the combustion
body, the first relation can be rewritten depending on the diameter of the body (Werner
et al. 2002) as:

lgN (≥ d) = c − d lg d ,

where d is the diameter of the body in meters, c = 1.568 ± 0.030, d = 2.70 ± 0.09.
Note that for lunar craters, recalculated to the diameter of the asteroids that form
them (Grant et al. 2006) in the size range from 25 to 200 m, the d index is close to 3,
i.e., b≈1, which is consistent with the scheme of Kolmogorov in Sect. 1.3. This is the
same explanation for the cumulative dependence frequency—the volume of volcanic
eruptions (Golitsyn 2003), as a cumulative distribution for objects associated with
the energy of an individual process (we remind you that in (1.31) the square of the
velocity is energy per unit mass).

This also includes data on the distribution of stone masses in the range from 1 to
2000 kg on the surface of Mars for four different locations on its surface (Grant et al.
2006). They also have a power-law appearance N (≥ m) ∼ m−n, and the n indicators
for them are 0.9, 0.9, 1.1, and 1.2. These stones when cosmic bodies hit the surface
of the crater Gusev, where the US apparatus landed, and near it they confirm the
general formula N (≥ A) ∼ A−1. Slight differences in indicator values may be due
to different composition and properties of rocks and an insufficient sample size.
However, ANK34 again acts as (1.31).

11.5 Experimental Test of Kolmogorov’s Scales
in the Evolution Laws for Spherical Flames

The work by Gostintsev and Fortov (2007) summarizes the theory and experiments
to test the laws of propagation of a free turbulent spherical flame in a combustible
gas mixture. The experiments were carried out in spherical volumes with a radius
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from 0.5 to 1 m, limited by a transparent shell through which the photograph was
taken on rapidly rotating spherical film. The arson was carried out by burning thin
tungsten wire 1 mm long and 0.1 mm in diameter. Used five such mixtures: 30% H2

+ air; CH4 + 2O2; C3 H8 + SO2; H2 + O2; C2H2 + 2SO2. High-speed photography
gave the positions and velocities of the flame front with accuracy the best 10−4 s. All
experiments were carried out at normal atmospheric pressure and T = 300 K. For
the above mixtures, all the necessary molecular constants: are thermal conductivity
coefficient, Prandtl number, and speed of sound. Therefore, we can calculate the
rate of generation of kinetic energy ε, per unit representing masses, Kolmogorov
microtimes, and velocities in dimensionless coordinates of flame speed and diffusion
coefficients at their flame front.

In Fig. 11.5 shows the dimensionless position of the front R(τ) depending on the
time normalized to the Kolmogorov scale given by various symbols average front
positions over many experiments. Solid curve—R ∼ τ 3/2. Figure 11.6 shows the
dependence of the Peclet number on the turbulent coefficient stirring:

Pe = D

χ
= dR2

2χdt
∼

(
R

λ

)4/3

,

where λ = (
χ3ε

)1/4
—Kolmogorov microscale. Along the axis of Fig. 12.4 straight

line delayed ∼ R4/3, the solid bisector on it also demonstrates the Richardson–
Obukhov scale (1.32), its existence in such unusual experiments.

Concluding this section, we can say that the Fokker–Planck–Kolmogorov
Eq. (1.30) demonstrates the great richness of its content, which proves it by analytical
solution at the end of Chap. 1, transforming it by substitutions (1.31) and (1.33) into
self-similar form and, finally, by numerical calculation, GlG10, and direct experi-
ments, the results of which are depicted in these figures. All verifiable relationships
can be obtained from considerations of similarity and dimension (Gostintsev and
Fortov 2007).

Fig. 11.5 Dependence of R/
λ on τ for free turbulent
spherical flames
(experimental points with
different symbols correspond
to different combustible
mixtures) (Gostintsev and
Fortov 2007)
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Fig. 11.6 Logarithmic
dependence of the Peclet
number Pe versus (R/λ)4/3.
Straight line—theoretical
dependence,
points—experimental values
(Gostintsev and Fortov 2007)

11.6 Examples from the Theory of Elasticity

Examples of the appearance of third fractions in exponents in various physical rela-
tionships give participation in the processes of physical quantities, related to volu-
metric and two-dimensional characteristics. Consider the formation of cracks in a
solid, leading to its destruction.Macroscopic theory of this process was developed by
Barenblatt (1959), a detailed and rigorous description which can be found in book
B02. The formation of cracks is determined by the modulus of Young’s uniform
compression E and surface tension energy T. These two values introduce brittle
fracturing:

K =
(

vET

1 − v2

)1/2

,

where ν is Poisson’s ratio. Young’s modulus is a volumetric characteristic with the
same dimension as pressure: ML−1 T−2, surface tension [T] = MT−2 as energy per
unit surface, dimension [K]=ML−1/2 T−2. In the engineering system of units, where
force F, units are [E] = FL−2, T = FL−1, K = FL−3/2.

In the 1880s, the famous physicist Heinrich Hertz (1837–1894) discovered a
new phenomenon in the mechanics of solids. If a stamp is applied to a sample of
a solid body with pressure, then a conical crack forms in the body, growing with
increasing load, and when under a certain sufficiently large load, the crack grows
without increasing the load and the sample falls to pieces.

Analysis of the dimensional force balance for the radius R of a conical crack gives
value (Roesler 2013; Benbow 1960):

R = C1(P/K)2/3,
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where is the numerical coefficient C1 ≈ 1/ 50. So, putting into operation a physical
unit related tomaterial rupture on some surface leads to the action of volume pressure
to the appearance indicator in 2/3.
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Chapter 12
Similarity and Dimension, Rules
of Action

12.1 Scaling

This text follows mainly the ideas of Grigory Isaakovich Barenblatt (1927–2018)
(Barenblatt 2003). Processes and associated parameters are characterized by certain
quantities. These quantities are measured by comparing certain standards of units
of measurement with them. These units are currently tied to some natural physical
processes, for example, for a unit of length of 1 m, 1,650,736.73 wavelengths of
radiation in vacuum are chosen during the transition from the 2P10 level to 5d 5
of the krypton-86 atom. The previously existing standard was equal to one forty-
millionth of the length of the Parisian meridian, measured according to the proposal
Laplace during the Great French Revolution. The length of such a rod is called a
meter, and it is kept in the Chamber of Weights and Measures in Paris.

A second is defined as 1/86,400 of the average solar day. The more accurate and
universal modern definition of a second—9,192,621,770 period of radiation of the
cesium-133 atom, corresponds to the transition between two hyperfine levels of the
ground state of this atom. A sample, also stored in Paris, corresponds to a unit of
mass of 1 kg. Initially, it was associated with a volume of (1 dm2) of water at 0 °C
and a pressure of 1 atmosphere.

Units of measurement form systems for measuring (by comparison) certain
processes or quantities. One unit of length, for example, 1 m, is sufficient for
measuring geometric objects. Two units—length and time—are sufficient for
measuring kinematic phenomena, for example, accelerations and velocities. To
describe forces, energies, and powers, we need the concept of mass. Systems of three
units of measurement LMT, length, mass, and time are sufficient to describe a large
number of processes. Russian GOST introduced the meter, kilogram, and second
system, following the one introduced in the mid-twentieth century by the Interna-
tional System SI, System International. The scientific community of the world at first
took SI with hostility (calling it Satan Invention, the invention of Satan), because
they were accustomed to the GGS system, centimeter, gram, second. Currently, the
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vast majority of scientific disciplines use the SI system. However, both SI and GGS
systems are included in the same class of units of measurement LMT.

In technology, the LFT system of units is often used, where the unit of length is
1 m, force is 1 kgf (kilogram-force), and time is 1 s. In electrodynamics, sometimes
a convenient system was introduced in 1966 by Kapitsa (1966), where the classical
radius of the electron is taken as the unit of length, the mass of the electron is taken
as the unit of mass, and time enters through the unit energy of an electron at rest,
mc2. The first author in 2008 (Golitsyn 2008) proposed a system of units based on SI,
which uses the 1 J energy unit instead ofmass-systemLETwhich is used occasionally
in this book. When considering thermal processes, the system of mechanical units
of measurement must be supplemented with an independent standard. Convenient to
enter the standard temperature in the form of degrees Kelvin 1 K. When considering
rather complex processes, you can enter an arbitrary number of units. For example,
when considering the speeds of sports academic boats from the number of rowers
(Barenblatt 2003; Kapitsa 1966), four units of measurement are introduced: water
density, the desired speed, the length of the boat, and N—the number of rowers (see
the analysis of the situation in the book (Kapitsa 1966). It turns out that the speed of
the boat is proportional to N1/9.

It’s time to define the dimension. The dimension is called a function, determining
how many times the numerical value of a given physical value changes quantities
during the transition from the original system of units to an arbitrary system within
this class. For example, if we move from SI to CGS for speedup, e.g., gravity, then
such a transition will be from 9.8 m/sec2 to 980 cm/sec2. Dimension acceleration
in the general case LT−2 in the LMT system of units, and the energy dimension is
ML2T−2. According to Maxwell’s proposal, the dimension of a quantity is denoted
by square brackets, for example, power dimension [W] = ML2T−3. This unit is in
SI called Watt.

Since the time of Buckingham (1914), it has been known that dimension as a
physical quantity is monomial (proof in Barenblatt 2003):

[y] = AX α1
1 X α2

2 . . .X αn
n ,

whereXi—units ofmeasurement,A, α1 … αn—constants. Such ratios are often found
in various branches of science. Power laws never appear by chance, they discover the
most important property of the phenomenon under consideration, its self-similarity.
This word means that changing in time and space, the phenomenon reproduces itself
in changing time and/or spatial scales (in this book, for example, in Sect. 1.3, the
main equation by Kolmogorov is reduced by such a replacement to a self-similar
form).

In all works (Barenblatt 2003; Kapitsa 1966; Golitsyn 2008), it is noted that if
there are n control parameters, physical quantities, or universal constants, which
include k units dimensions, and n – k > 0, then m = n – k dimensionless quantities.
Such quantities are called similarity parameters Πi. Then the required value can be
written as:
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a = AX α1
i . . .X αk

k ,

where the dimensionless quantity A is a function of the dimensionless parametersΠi,
i = 1…m. Values of A are found by comparison with measurement data or numerical
calculations.

Practical advice for use in real situations is clearly described in Barenblatt (2003)
andBarenblatt andZeldovich (1972). If the problemcanbedescribed inmathematical
equations, then these equations and initial and boundary conditions and give a set of
defining parameters. After this, it is necessary to analyzewhether it is possible to form
from them dimensionless parameters, similarity criteria. If some of them turn out to
be very large or very small, then some of the initial parameters may be omitted in
further discussions. Example: if theReynolds numberRe=uL/ν>>1, then in the zero
approximation we can ignore viscous strength, i.e., such an analysis can simplify the
task. In such cases, the resulting results can be called intermediate asymptotics, where
power laws. The concept of intermediate asymptotics was introduced by Barenblatt
and Zeldovich (1972). This determines the interval action of similar power lawswhen
the dimensionless parameters A in the previous formula are quite constant. Further
specific actions consist of writing the dimension of the desired quantity and the
dimensions of the defining parameters X i and compiling a system of linear algebraic
equations by equating the exponents on the left to the sum of the exponents on the
right. The solution is this system gives the desired result. Sometimes the choice
of units of measurement eliminates the need to solve an algebraic system: so, in
Chap. 4 in the system units of LET, the energy spectrum of cosmic ray particles is
found immediately, it can be said, obvious, although he waited for his approval for
over than 40 years.

In real studies, various situations were encountered, in detail described in Baren-
blatt (2003), concerning the determination of parameter A and exponents, different
from standard methods. In this book, which describes the largest natural processes,
fortunately, we have not yet encountered any special situations. General rules of
action without specific examples do not fit into the framework for long the minds
of researchers. Therefore, we will illustrate with two instructive, from our points of
view, research. The first, relatively recent one, belongs to Barenblatt and Monteiro
(2010) and refers to crystalline bodies (Barenblatt and Golitsyn 2017; Landau and
Lifshitz 1976). Grigory Isaakovich told the first author, quanta has never been used
in his practice actions h= 6.626 10−27 = g cm2 s−1. Solids are characterized by their
elastic modulus μ and, of course, density ρ. These three quantities are characterized
by three units measurements, so you can immediately obtain the length scale from
them (Barenblatt and Golitsyn 2017):

λ = α

(
h

(ρμ)1/2

)1/4

= α

(
h

cρ

)1/4

, (12.1)

where c = (μ/ρ)1/2—speed of propagation of longitudinal elastic waves.
Accounting Poisson’s ratio is needed only in the formula for transverse velocity,
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but considering the small degree of 1/4, the result will change insignificantly (Baren-
blatt and Monteiro 2010). Estimates are given for scale λ values of the order of 1 nm
= 10−9 m.

In the same conversation, I told Grigory Isaakovich that the discovery of such a
nanoscale like a diamond, but it still needs to be processed to turn it into a brilliant.
This is how work (Barenblatt et al. 2014) with professional mineralogists arose. We
tried to give a physical meaning and origin to the scale λ, but G.I. said no all at once,
which was done in Golitsyn (1970), which was supplemented in comparison with
(Barenblatt and Golitsyn 2017) one metal and six simple molecules. As a result,
for 33 substances comparison scale λ with real size data αλr crystal lattice, i.e.,
interatomic distances, given for the coefficient α = 1.986 ≈ 2. This is once again
illustrating Einstein’s statement that in the correct dimensional formulas, numerical
factors obtained by comparing theoretical predictions with real data must be neither
very small nor very large, i.e. be O(1). Here, in contrast to Barenblatt et al. (2014)
and Barenblatt and Golitsyn (2017), the calculations used the value h = h/2π.

Along the way, in Barenblatt and Golitsyn (2017) a formula was derived for
estimating the density of crystalline bodies by formula ρT = mλ−3, where m is the
mass number of an atom or molecule in a crystalline grate. Density calculations
using this formula for 23 crystals gave ρo/ρT ≈ 4, i.e., again this is several of the
order of one. Of course, in reality, the density is found simply by weighing certain
volumes, but this formula of ours only illustrates possibilities of the dimension theory.
Physical origin of scale λ such that it is increased by two or three order of magnitude
Heisenberg uncertainty relation �r · �p ≥= h/4π , What is obtained by using the
simplest Debye theory of condensed matter (Landau and Lifshitz 1976) and using
the relationship between the energy of a vibrating atom ε and him impulse

ε = p2/2m.

The second example is the theory of similarity for planetary atmospheres (Golitsyn
1970, 1973) and its additions 40 years later in monograph G12. Its peculiarity is that
all the equations are there: continuity, movement, state, energy. To identify similari-
ties in this the system needs to non-dimensionalize these equations by choosing the
appropriate scales: for lengths, this is the radius of the planet α, the speed scale is
the adiabatic speed of sound:

ca = (γRTe/μ)1/2, γ = cp/cv, cp − cv = R/μ

• constant for gas with molecular weight μ,

Te = [q(1 − A)/4σ ]1/4

• effective temperature of the exhaust heat radiation, q—solar radiation arriving
at the disk of the planet. σ = 5.67 10−8 W/m2K4 is a constant in the Stefan–
Boltzmann radiation law. For the Earth on distance 1 au. (astronomical unit)
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q = 1365 ± 2W/m2, i.e., per unit the earth’s surface, considering albedo A =
0.3, accounts for 239 W/m2. For scale time taken τe = α/ce, which, as is known,
determines the establishment local thermodynamic equilibrium on scales on the
order of the radius of the planet α.

After reducing the equations to dimensionless form, 3 parameters appear in the
similarities:

�ω = ωaa

ce

with a term c of the Coriolis acceleration called the rotational Mach number, at
gravity acceleration term:

�g = RTe
μga

= H

a
,

where H is the atmospheric scale height. The energy equation:

dT

dt
= Q

cp
,

where Q = Q(z)—heat influx per unit mass, associated mainly with the balance of
solar and thermal radiation. When averaging it over height as:

1

M

∞∫
0

ρ(z)
Q(z)

cp
dz

an important similarity parameter appears, the criterion:

�M = qτe
McpTe

.

Note that in Gierasch et al. (1970) and Golitsyn (1970, 1973) these criteria
appeared by simple search defining external parameters included in the system equa-
tion. Viscous dick is neglected, considering that the Reynolds number is very high
and its exact value immaterial. Similarity parameter ΠM is related to the mass of the
atmosphere, and it can be interpreted as a relation between two times τe/τo, where
τo = McpT/q = wo/q = McpTe/q—heat content (enthalpy) of an atmospheric
column of mass M. In Gierasch et al. (1970) this parameter was interpreted as a
measure of the nonadiabaticity of the movements.

Similarity parameters Πg and ΠM for the planets of the solar system all are small
10–2–10−5. Therefore, we can accept the hypothesis that those included only in
parameters g and M are insignificant for estimating the total kinetic energy atmo-
spheric movements. Rotational numberΠω order 10−2 for Venus and Titan, a satellite
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of Saturn, about 1 for the Earth andMars, and noticeablymore than one—from4 to 15
for giant planets. Four dimensional values are remaining: the density of the incoming
radiation surface unit [qA]=MT−3; radius [α]= L, heat capacity

[
cp

] = L2T−2K−1,
constant [σ ] = MT−3K−4, have 4 independent dimensions, and they can form a
quantity with the dimension of energy:

Ek = 2πBσ 1/8c−1/2
p q7/8A a3.

This quantity does not containmass, it cannot be potential energy, no heat content,
and only kinetic energy remains; the 2π factor is introduced to simplify further
formulas. Dimensionless numerical coefficient B, according to Barenblat (2003),
may depend on all three similarity parameters. However, the parameters Πg and ΠM

are very small and can be neglected. Addiction remains B = B(�ω). Let us assume
that B = 1 for planets with �ω ≤ 1, i.e., for Venus, Mars, Earth, and Saturn’s moon
Titan, slowly rotating with a dense atmosphere. For the Earth, the average speed is 17
m/s, and our theory gives 11 m/s (Gierasch et al. 1970; Golitsyn 1973); for Venus at
the surface 0.4–0.7 m/s, and in its main atmosphere ~ 2 m/s, near Mars—according
to observations from 5 to 20 m/s, theory—30 m/s, for Titan ~ 0.5 m/s, theory 0.4
m/s. Let us present here for Jupiter—100–200 m/s according to observations and
120–140 m/s—theory (G12).

For giant planets, Taylor series expansion:

B(�a) = 1 + a�2
ω

gives at α = 0.9 ± 0.2 [see (G12)] velocity values for Jupiter, also consistent with
measurements. A similar consideration of movements in the solar atmosphere also
leads to reasonable results (G12). These books provide useful formulas for estimates
of average wind speeds:

U =
(
2Ek

M0

)1/2

≈ �
1/2
M ce,

where M0 = 4πα2M—full mass of the atmosphere and δT ≈ �
1/2
M Te—an estimate

of the temperature difference on the surface of the planets, setting the atmosphere in
motion, i.e., exciting the winds. The formula for the kinetic energy of winds can be
presented as a short formula:

Ek � πr2qA · τe,

which states that the energy of atmospheric movements is of the order of solar power
energy incident on the disk QA = πr2qA, multiplied by thermodynamic time relax-
ation on a planetary scale, which is the minimum temporary scale in the system—a
good illustration of Sect. 12.1.
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12.2 Astrophysical Applications

This author has worked considerable time on stellar, galactic and galactic cluster
astrophysics (Golitsyn, 2015, 2016, 2017) and has explained a number of empirical
observations.

Measured are up to five characteristics and there is the universal gravity constant
G. Beside a non-dimensional similarity parameter Πν, virial, other non-dimensional
parametersmay exist. The luminosityW withG form a velocity scaleUd = (WG)1/5,

with temperature velocity scaleUT = (3kT/μm)1/2 it forms the new similarity value
Π2= Ud/UT . For 30 clusters of quite different agesΠ2 = 0.26± 0.02. Due to excess
number of the measured quantities each of which is determined by two units of mass,
time and length many possibilities exist to find connections between these quantities
which are described by Golitsyn (2017), which may be used to oversee the general
quality of observations.
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Chapter 13
Convection

13.1 Introduction

Convection is the most common type of fluid movement in nature, in technology,
and even in everyday life. His research dates back just over a century, and during
this time they acquired a solid basis, which we will try to present here. Thousands
of articles and dozens of books are devoted to the description of convection, but the
physical side of the process is rarely given enough attention. This will be done using
the methods of mathematical physics, similarity and dimension theory, and connec-
tions with the scale of the theory of random motions of A. N. Kolmogorov 1934 and
their development in the works of his students will be traced. They will also be brief
on the main manifestations of convection in nature are discussed: movements from
instantaneous and constant heat sources, convection in a rotating fluid, deep convec-
tion in the ocean, in the earth’s mantle, etc. Many of these aspects are presented in the
book G12 and are found in the previous paragraphs of this book. Quite systematic the
presentation of the subject seems useful, but there are clarifications and their further
development.

Convection is amanifestation of Archimedes’ law: heavy bodies sink, light bodies
float. Due to the equation of state, density is mainly a function of temperature, and for
low speeds compared to the speed of sound pressure can be neglected, but in a gravity
field the pressure is close to hydrostatic. The general condition for the occurrence of
convective instability of a horizontal layer of liquid is the requirement for a vertical
density gradient—its value (in absolute value) must be greater than adiabatic:

γpa = −dρ

dz
= − dp

dρ

dp

dz
= −ρg

c2
(13.1)

where c2 is the square of the adiabatic speed of sound, equal to RTcp/cvμ due to
the equation of state. In Landau and Lifshits (1986) the derivation of the vertical
temperature gradient with the condition that the entropy of a substance does not
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increase with height, from which:

γpa = −αgT (z)

cp
= −T (z)

H
, H = cp

αg
, (13.1′)

where α is the coefficient of thermal expansion of the substance under consideration,
and H is the internal height parameter: for air at T = 300 K the value is H = 30 km,
for water at T = 20°C, α = 2 × 10–4 and H = 2000 km, for the mantle H = 6000
km.

When density inhomogeneity occurs, a buoyancy parameter appears:

b = −g

ρ

〈
w′ρ ′〉 (13.2)

where the primes mean fluctuations of vertical velocity and density, and angular
brackets indicate averaging. Boussinesq’s approach ρ ′/ρ = −T ′/T operates in the
case when the height of the layer under consideration h � H = cp/αg. Otherwise, it
is necessary to use the so-called “deep convection approximation” (anelastic approx-
imation). This incident (and other moments) are described in detail in Kerry’s book
Emanuel (1994). For example, for convection in the earth’s mantle, which extends
over 3000 km, and the magnitude H ≈ 6000 km, however, the refined equations do
not give significantly new effects (Golitsyn and Vulfson 2007).

13.2 Basic Equations

To describe convection, the Navier–Stokes equations are used, as the equation heat
diffusion and equation of state:

ρ
∂ui
∂t

+ ρuk
∂ui
∂xk

+ 2ρεijkωjuk = − ∂p

∂xi
+ ρFi + ρ

∂

∂xk
v
∂ui
∂xk

, Fi = gi, (13.3)

∂T

∂xi
= k

∂2T

∂x2i
, p = p(ρ,T ) (13.4)

where ωi—vortex vector, k—thermal diffusivity coefficient, density ρ considered to
be a function of temperature only. Multiply scalarly (13.3) by ui and let’s integrate
vertically over the layer thickness from 0 to h. Then we get the equation energy
balance, G12, and Golitsyn (1979, 1980):

dK

dt
= G − D, K = 1

2
ρ

h∫

0

〈
u2 + v2 + w2〉dz (13.5)



13.2 Basic Equations 133

kinetic energy of a unit column of liquid,

G = αρg

h∫

0

〈
w′T ′〉dz (13.6)

the rate of generation of kinetic energy from potential energy,

D = ρv

h∫

0

〈
ui

∂2ui
∂x2k

〉
dz (13.7)

rate of kinetic energy dissipation due to viscosity. B statistically inpatient case dK /
dt/ = 0 and G = D, as well as ε = b.

During convection, the heat flux consists of molecular transport and heat, carried
by movements. At an arbitrary level within the layer under consideration full flow:

f0(z) = ρcρ

(
−k

dT

dz
+ 〈

w′T ′〉
)

and, integrating it from 0 to h, we get:

f0h = ρcpk�T + feh, (13.8)

where �T = T1 − T2—temperature difference at the boundaries of the layer, f0 =
ρcP

〈
w′T ′〉—heat flow, carried by movements. Divide (13.8) by f 0h and we get:

fe
f0

= 1 − Nu−1 ≡ 1 − αN , (13.9)

where the most important sought-for quantity appears in the convection process, the
Nusselt number:

Nu = f0h

ρcpk�T
, (13.10)

showing how many times the amount of heat flux imparted to the layer is superior
to conductive molecular flux. Note that from (13.9) it is clear that flow f e, carried
by movements in (1 − αN ) times less than the total heat flux supplied layer. If the
horizontal and vertical scales are noticeably different, then their ratio will appear in
the continuity equation Π = h/L, the so-called aspect ratio. A common and little-
known result is, so to speak, Convection efficiency, i.e., what fraction of the heat
supplied to the layer is used for the generation of kinetic energy (Golitsyn 1980),
which gives the ratio (13.6) to (13.8). Taking into account (13.9):
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G

f
= αgh

cp

fe
f0

= h

H
(1 − αN ) ∼= h

H
, (13.11)

i.e., in this sense, the efficiency can be very small, and the condition h << H justifies
the approach of Boussinesq.

Next is mathematical physics, begun by Lord Rayleigh (Emanuel 1994; Rayleigh
1916). He considered the problem of starting motion in a flat layer of thickness h
with a lower boundary T (0) − T (h) > 0. Introduced scales of speed k/h, time h2 /k
and temperature ΔT, and then in equation movement, two dimensionless parameters
appear, subsequently called the number Rayleigh:

Ra = αg�Th3/kv (13.12)

and the Prandtl number:

Pr = v/k. (13.13)

The presence of two similarity numbers in the equations of the process indicates
that the numberNusselt is their functionNu= f (Ra, Pr), a problem found in (Emanuel
1994). Helpful is the so-called Rayleigh flux number considering (13.2)

Raf = Ra · Nu = bh4

k2v
. (13.14)

From the equality of generation and dissipation in a steady state, we can estimate
for convection buoyancy flux through velocities, to estimate which we use the Stokes
formula (Landau and Lifshits 1986)

ε = v
∂ui
∂xk

(
∂ui
∂xk

+ ∂uk
∂xk

)
= b = αgf

ρcp
, (13.15)

where the buoyancy flux is expressed using formulas (13.2) and (13.15). Let’s
evaluate velocity derivatives:

∂ui
∂xk

∼ U

h/2
,

through the desired total speed U and half layer height h for both solid walls. In our
flat case in (13.15) there will be 8 terms, there are 18 of them in three dimensions.
Inserting these expressions into (13.15) and resolving it relative to U2, we obtain,
taking into account the fact that ε = b in the quasi-stationary state:

U 2 = (〈
u2

〉 + 〈
w2

〉) ≈ 2
〈
w2

〉

and onwards
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u ≈ w =
( ε

av

)1/2
h =

[
αgf

aρcpv
(1 − αN )

]1/2

≈ k

h

(
Raf
a

)1/2(
1 − αN

2

)

= k

ah
Ra1/2f

(
1 − αN

2

)
, (13.16)

where α = 8 or 18. Later in Golitsyn and Grachev (1981) the exact coefficients a
were calculated and it was it was found that their value weakly depends on the type
of boundary conditions and coincides within 20% with our elementary estimates.
Note that the expression for:

U 2 ≈ εh2/v

coincides with the structural one up to a numerical coefficient velocity function
for viscous scales in the theory of local homogeneous and isotropic turbulence
Kolmogorov–Obukhov (Monin and Yaglom 1975). From comparison (13.16) and
(13.14) it follows that:

u ∼ Ra1/4f .

13.3 Convective Instabilities

Convection arises from rest when the Rayleigh number reaches some critical value, it
is obvious that at this point the Nusselt number Nu= 1, so it starts tomake sense from
one. This problem was solved to the end in 1916 by Lord Rayleigh (Rayleigh 1916;
Emanuel 1994), who obtained for two free boundaries of the layer the final value of
the critical number Racr = 27 π4 /4= 657.5. Two other cases of boundary conditions
were considered by Chandrasekar (1961) and Golitsyn and Vulfson (2007), who
found that at the upper free boundary, and the lower solid boundary Racr = 1100.7,
and with both solid boundaries Racr = 1707.8, for the determination of which the
transcendental algebraic equations. It is interesting to note that if the boundary from
above is free and the wind blows over it wind, the value of Racr increases with the
Reynolds number for the flow (Gray 1968). One of the many conditions for hurricane
formation, according to long-term observations, is the absence of appreciable wind
shear in height. In the heat diffusion equation before the second derivative of the
temperature at disintegration, the Peclet number appears:

Pe = Uh/k = RePr, (13.17)

which is the product of Reynolds and Prandtl numbers. At Pe >> 1 it means that near
the wall there appears a thermal boundary layer with a thickness of
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δT ≈ hPe−1/2, (13.18)

and themain vertical temperature changeswill be in such layers. From the continuous
heat flux during the transition from the boundary layer to the bulk, close to the
isothermal fluid mass, it follows that f ′ = f /ρcp = k�T/2, where �T/2—is the
temperature drop at one wall. Then it follows from (13.18) that Nusselt number:

Nu = 1

2
Pe1/2 (13.19)

When studying the convection mode of a viscous fluid, it is natural to take (13.16)
as the scale of the velocity to take (13.16), and then with the help of (13.19) and
(13.16)

Nu = 1

2

[
Raf
a

(1 − αN )

]1/4

(13.20)

and, remembering that Raf = RaNu, we obtain from here after simple manipulations

Nu = Ra1/3
(1 − αN )1/3

2(2a)1/3
∼= 1

2

(
Ra

2a

)1/3(
1 − αN

3

)
∼ Ra1/3. (13.21)

This is the most important relation in the theory of convection, long-established
from experience and justified by considerations of similarity, since at Nu ~ Ra1/3 the
heat transfer does not depend on the height of the layer h, if there are no heat sources
or sinks in it. At αN/3 = (3Nu)−1 << 1 the dependence on h remains in this term,
but already at Nu = 7 this correction reduces the empirical relation (13.21) by about
5%. The dimensionless proportionality factor in (13.21) is

[
2(2α)1/3

]−1 = 0.15 at
α = 18. Extracting this value from data from numerous experiments in Golitsyn
(1979, 1980) yielded a value of β≈ 0.14 ± 0.015 Thus, simple theoretical estimates
with the involvement of experimental data justify the law:

Nu = βRa1/3, (13.22)

where the value β may depend on the Prandtl number Pr, which is not considered
here, h/L ratio, characterize boundary conditions, etc.

At the interface between water and air, only molecular mechanisms of heat-mass
transfer (vaporization), as well as the thermal radiation balance. If we know the total
heat flux (enthalpy) in water, then �T ∼ f 3/4. With moderate winds and f = 100
W/m2, a = 14 ± 1, ρ = 103 kg/m3, v = 10–1 m2/s, Pr ≈ 7, α = 2 × 10–4 K (T =
20 °C), hence we get ΔT ≈ 0.3 K—is the cold film. In tropical storms f ≈ 700 W/
m2 and more, ΔT ~ 1 K, for polar hurricanes f ≈ 2 ΚW/m2 and then ΔT ≈ 2 K. In
hurricanes, there are strong winds and waves. Therefore, the cold film is breaking
down all the time. Its lifetime is estimated by the formula (h2/k), independent of the
film thickness. In these three cases, the times will be 190, 72, and 48 s. However,
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strong and gusty winds, the collapse of the waves, and the limited periods of less than
10 s do not make it possible to the possibility of any more or less universal analytics,
although conversations with scientists using advanced experimental techniques show
that water gives hurricanes their total enthalpy ≥ 1 kW/m2, G12.

A few words about convection in the mantle. It’s caused by a geothermal flux of
heat, not uniform over the surface, but equal to 86 mW/m2 on average. The mantle
is about 3000 km thick, with cp = 107 J/kg K. For scale H = 6000 km at kinematic
viscosity v ~ 1017 m2/s and using formula (13.16) we obtained convective velocities
of the order of 5 cm/year, p. 12.2. Such velocities are confirmed byGPS for individual
plates moving from 1 to 18 cm/yr.

13.4 Time Criteria and Heat Transfer

Time scales have long remained without much attention. They can be found by
knowing the velocity scale and the dimensions. For 3 N >> 1, it follows from (13.16)
that:

τ = h

u
= a

(
μcp
αgfe

)1/2

= ah2

k
Ra−1/2

f , (13.23)

whence it can be seen, taking into account (13.14), that the time scale does not
depend on the thickness of the layer. This is confirmed by Fig. 13.1, which shows
the maxima of the temperature spectra in depending on Raf , taken from Boubnov
and Golitsyn (1990), where the same figure is available, and the following are given
(in Fig. 13.2) also time spectra of temperature fluctuations in a rotating vessel and at
different speeds of its rotation, differing by a factor of 30.

Fig. 13.1 Dependence of
the most probable period of
temperature fluctuations
fluctuations το on the
Rayleigh flux number Raf ,
the straight line corresponds
to dependence τo ∼ Ra−1/2

f
(Boubnov and Golitsyn
1990; Obukhov 1949)
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Fig. 13.2 Solution of the
energy balance Eq. (13.30)
by a cooled liquid with time.
The dotted line is the
solution of the same problem
with the law of heat transfer
law Nu ~ Ra with n = 2/7
instead of 1/3. The straight
line is drawn with slope β =
0.144 (Golitsyn and Grachev
1980)

Normalized by the square of the variance, they all lie well on the curve ω−2. This
is interpreted in the spirit of Obukhov (1949) about fluctuations of the passive scalar
when it has the same spectral characteristics as the velocity field (see also Sect. 11.2).
According to Obukhov (1949), both temperature and other passive scalar impurities,
in turbulent flow have an inertial interval with the same spectra as the velocity.
According to ANK34, Sect. 1.3, in Lagrangian variables, the mean square of the
velocity fluctuations is < u2(t) > = εt, and its frequency spectrum is ~ ω−2 (Golitsyn
2018).

Considerations of dimensionality allow us to estimate fluctuations of temperature,
which turn out to be equal to:

σ1 = δT =
〈
W ′T ′〉

w
= f ′

e

w
= a

h

(
fv

ρcpαg

)1/2

. (13.24)

Outside the thermal boundary layer, the formula for the temperature fluctuations
was obtained by Prandtl (1932) and Obukhov (1960) from the considerations of
dimensionality:

σT = Cσ f
′2/3
e (αgz)−2/3, (13.25)

where z is the height. The value ofCσ varies from1 to 2.5 depending on the conditions
of the experiment, which are not always identical (Foster and Waller 1985). It is
convenient to have this formula also in the form:
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σT/�T = CσNu
(
Raf Pr

)−1/3
. (13.25′)

In the last 15 years of the last century there appeared works on verification of the
relation (13.22)—Nu ~ Ran, in which at numbers Ra > 107 the values of n equal to
2/7, 0.309, etc. (cf. Kadanoff 2001), where it is stated about impossibility of a more
or less unified theory of convection at arbitrary Prandtl and Rayleigh numbers, at
different boundary conditions and station times of processes inside the layer, etc.).
For such studies, one should always take into account the temperature dependence of
the medium parameters. Thus, when T changes from 20° to 60°, the Prandtl number
for water changes from 7 to 3. Our understanding is that the law (13.22) works well
in the case of convection with a free surface and large Rayleigh numbers, i.e. (Ra/
Racr) >> 1.

To verify this, we set up two varieties of special experiments: (1) on cooling with
time of a layer of water with a known heat input and a layer of aqueous alcohol solu-
tions of different concentration with full control of the environment—temperature,
humidity, etc. (Golitsyn and Grachev 1980, 1984). Considering the enthalpy balance
in the liquid then:

dW

dt
= −f , (13.26)

where W is the total enthalpy of its components. The right part is the sum of direct
heat removal from the surface and evaporation from there and radiation balance on
it. The rate of heat removal by convection into the air is determined by the reduction
in it gravity, for the moment we will consider this only for water (see Chap. 9)

g′ = g
�T

T

(
1 + Bo−1

)
, Bo−1 = μw

μ

L�e

ρcp�T
= 0.614L1

�e

T
, (13.27)

where Bowen number is the ratio of apparent and latent heat fluxes, L—is the heat
of vaporization (weak function of temperature according to the Clapeyron-Clausius
law),Δe—relative humidity of air, related to the mixture ratio q= 0.622 (e/p), p—air
pressure, equal to 1.013 × 105 Pa at mean sea level. It is further assumed that. at the
surface e = es = 100%, i.e. the vapour is saturated, and away from it the measured
humidity, is determined by the air temperature and then Δe = es − re(T), where
r—relative humidity. The moisture flux from the surface is assumed to be governed
by a law of the type (13.22), i.e.

(13.28)

where index w refers to water vapour, kα—its diffusion coefficient in air, αΔe—
dimensionless value. Similar expressions could be written for other vapors, see
Fig. 13.3.
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When working with alcohol solutions, the same relationships are written for ethyl
alcohol vapors (Golitsyn et al. 1984). With appropriate nondimensionalization, the
enthalpy balance equation in a liquid (Golitsyn and Grachev 1986) is reduced to the
form:

dθ

dτ
= −1

3
θ4/3, θ = �T (τ = 0) − �T (τ )

�T0
, (13.29)

whose solution at the initial condition θ(τ = 0) = 1 looks like:

θ(τ ) = (1 + τ)−3

θ−1/3(τ ) − 1 = τ (13.30)

This solution is shown in Fig. 13.2, where the experimental points fit well on the
theoretical curve (13.30) as a function of time. The dotted lines correspond to the
curve with n = 2/7 instead of 1/3 in the law (13.27). The same hypotheses, with n =
1/3, were used when processing data with alcohol solutions assuming that there are
no ethyl alcohol vapors in the laboratory room.

Figure 13.3 presents data on mass flows of matter from the surface of alcohol
solution, controlled using analytical balances, in comparison with the theoretical
solution mass loss curve, calculated using relationships like (13.28) for the mass
of vapors in a specialized Institute of State Standards of the USSR as the third
co-author of the work Golitsyn et al. (1984). So, these two figures experimentally
confirm the operation of law (13.22), at least for convection in a layer with an open
surface. A complex combination at the horizontal axis gives an idea of the combined
Rayleigh number with n = 1/3, the numerical coefficients α, β, and γ all correspond
to the general relationship Nu= 0.147 Raf 1/3. The alcohol concentration in solutions
varied from 0 and reached 69.5%.

Fig. 13.3 Data on mass flow
from the surface of alcohol
solutions in motion with a
theoretical curve obtained at
n = 1/3 and β = 0.147
(Golitsyn et al. 1984)
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On this basis, a formula was proposed for heat and mass transfer between the
atmosphere and the ocean (Golitsyn and Grachev 1986), considering real measure-
ments of heat and moisture flows in nature and in the laboratory. It was seen at the
EuropeanMedium Term Center weather forecasts. Its use has significantly improved
global weather forecasting, which the director of this center told me about in 1992.
True, later they slightly improved our parameterizationwithGrachev, includingweak
horizontal winds (Grachev 1990), associated with the suction of mass into rising
thermals, and did not refer again.

In 1985, a young and highly active employee of the nuclear center inAldermaston,
Great Britain, showed keen interest in the second experiment with alcohol, but I
limited myself to referring to Grachev (1990). One can imagine that these laws
(Golitsyn 1983) are needed for some technological processes. In the 1980s, I, as
the “discoverer” of the “nuclear winter” effect (the results of the first author were
published three months earlier than in the USA), having an analogy with global dust
storms on Mars, quickly realized in April 1983 that clouds of dust and smoke as a
consequence of a large-scale nuclear war will have the same anti-greenhouse effect
as Martian dust storms and the same meteorological consequences—increasing the
static stability of the atmosphere, absorbing solar radiation with dust, but a surface
transparent to thermal radiation, suppression the formation of cyclones, a decrease
in evaporation, all due to an increase in the stability of the atmosphere (see Budyko
et al. 1986).

13.5 Convection in Rotating Fluids

The role of the rotation is described in Chaps. 5 and 9. It adds for consideration the
Coriolis parameter lc = 2�, multiplied on a sphere by sin θ , θ is addition to lati-
tude. The Nusselt number here is the function of the three non-dimensional param-
eters Nu = Nu(Ra,Ta,Pr). The problem of fluid instability at rest was solved by
Chandrasekhar (1953, 1961) and was laterly experimentally confirmed.

Golitsyn (1980) and Golitsyn and Grachev (1981) has dimensionally obtained
the velocity scale u = (b/�)1/2, where b is the buoyancy flux and tested by home
experiments with � = 78, 45 and 33 revolutions per minute.

By stopwatch measured the time of travels of a fixed distance by dry tea particles
in a warmed fluid evaporation of which supplied the necessary flux b. For each set
we performed 30 measurements and found that at 33 rpm velocities of particles were
about 1.5 times faster than at 78 rpm: (78/33)1/2 = 1.54.

At that time, end of 1980s, there was no laser velocity measurements and no
routines to get results. But after these measurements the work Golitsyn and Grachev
(1981) was send in press. In the paper of 1980 there was an estimate of the magnetic
Reynolds number Rem = UL/vm ≈ 100, and at that time such a valuewas considered
to be enough for the geomagnetic dynamo; the velocities of order 5 km/yearwas close
to the drift velocities of the geomagnetic field.
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In 1983 I had a graduate student Boris Boubnov (1953–1999), a great master in
all hands: experimenter, for routines, analytical calculations and we started studies
of rotating fluid convection for more than 10 years. The results are described in
the book by Boubnov and Golitsyn (1990). In the difficult for Russia 1990s Boris
worked in the prestigious hydrodynamical laboratories in England, France, USA,
Germany, quickly organized simple but meaningful experiments, analyzed results
and wrote papers. He was quite popular abroad, but died at 46. In 2001 in USA
was an International conference for geophysical hydrodynamics and its participants
dedicate this conference to his memory.

The work with Boris started with the test of the appearance of instabilities at
changes of both similarity parameters Ra and Ta. At Fig. 13.4 the classification
of varior convective regimes is presented in logarithmic coordinates Raf and Ta at
Pr = O(1) for a rotating plane layer. The region between lines a and b contains the
hexagonal structure of Chandrasekhar, which at the laboratory experiments is seen
at Fig. 13.6 as a triangular one. At Fig. 13.4 the roman numbers note the regions of
the basic convective regimes: I—the rest, a—the line instability, II is the region of
regular geostrophic convection as at Figs. 13.5 and 13.6, where the velocity scale
is Eq. (5.3) with numerical coefficient k = 1.7 (see Boubnov and Golitsyn 1990,
1995). The region III is the irregular geostrophic convection as is Fig. 13.7 in the lab
and Fig. 13.8 on the sea surface. Figure 13.6 shows the process of transformation
of hexagonal vortex grid by appearance of vortices dancing around one another,
formation of the double helix and then its coalescence in one larger vortex.

At Fig. 13.4 the arabic numbers denote various geophysical and astrophysical
objects (Golitsyn 1991) at an assumption, that somephenomenological determination
of Ra and Ta one could determine sufficiently stable configurations similar to those at
Fig. 13.7. The comparisonofFigs. 13.7 and13.8 gives a hope that it is sensible, though
the sizes differ by 106 times. But it would require to change the molecular transport
coefficients on the macroscopic ones. In other words, those are hydrodynamical
structures of the same nature, at Fig. 13.8 the vortices are miniharricanes (see Sect. 9.
3) and at Fig. 13.7 those are microharricanes in its structure. Tropical hurricanes
sometime also form in pairs and once even 5 hurricanes have been observed over
Atlantics.

Atmosphere of Jupiter presents a large variety of motions. At the temperate lati-
tudes it has a system of bounds of few latitudes wide were winds are opposite direc-
tions at neighbouring bounds. In the South hemisphere about 350 years ago Robert
Hook found an oval Large Great Spot of about 20 thousand kilometers wide. Later
many smaller spots were discovered of a few thousand kilometers wide living for
several years.

Due to the small angle of the own rotation, 3◦7′ high polar latitudes have not
been observed. Rotational Mach number Mω = ωr/c, r—the planetary radius, c—
adiabatic sound velocity, Mω = 15.

Hough (1898) has proposed the tidal equation to describe linear perturbations on a
rotating planet. The parameter γ = 4M 2

ω = 1200 for Jupiter. The eigen functions of
the Laplace tidal equations are found within±30 around equator (Golitsyn and Diky
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Fig. 13.4 Convective regimes for a rotating liquid layer: I at rest; II region of regular motions; III
region of irregular geostrophic convection; IV region of thermal turbulent convection; (a) critical
curve of the onset of convection; (b) boundary between regular and irregular convection for Pr =
0.7; (c) boundary between geostrophic and normal thermal convection for Pr = 1; (c′) same for
Pr = 104; (1) parameter range for our experiments; (2) range of values for parameters of basaltic
magma; (3) ocean, h = 200 m; (4) atmospheric boundary layer; (5) atmosphere of Jupiter; (6) hot
neutron star; (7) solar granulation; (8) ocean, h = 2 km; (9) cold pulsar; (10) accretion disk; (11)
Earth’s liquid core; (12) interior of Jupiter. G12

1966; Longuet-Higgins 1968) and further on decrease exponentially towards poles,
and we see the bands at the Jupiter and Saturn only there, for them both γ = O(103).

In 1960s for all larger planets internal sources of heat were found because their
outgoing thermal radiation was higher than the one if only solar radiation was acting.
These internal sources had been clearly forgotten toward 2016 when US station Juno
started to have meridional orbit around Jupiter and found at latitudes ±82◦ eight
cyclones near North pole and five cyclones near South one (Adriani et al. 2018).
During 2 or 3 years the author of papers on the subject hopelessly said about mystery,
nature of the cyclones before Ingersole et al. (2021) after thorough analyses have
concluded that the nature of the flour there is convective.

Golitsyn (2021) not at once paid an attention to the problem and has estimated
the buoyancy flux due to the internal heat to be b = 0.1 m2/s3. The formulas (1.31)
and (1.33) for t = 35, 424 s, the period of planetary rotation. Using this time and
b = 0.1 m2/s3 we obtain the mean velocity of 60 m/s and the size of about 2850 km.
The first observations presented tangential velocities of about 80 m/s with the scatter
of about 20%. At the near North pole diameters of 5 cyclones 5600–7000 km and
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Fig. 13.5 Horizontal current
lines in a rotating layer
during convection in a dense
layer (Chandrasekhar 1961)

Fig. 13.6 a Regular vortex lattice in region II. b The regular regime can be transformed into an
irregular one by rotating vortices around each other (1), forming double spirals (2) and (4), and
merging two vortices (3)

at the South pole for 8 cyclones 4000–4600 km. Remembering that at the Eq. (1.31)
should be a numerical factor about 1.6–2 (and

√
1.8 = 1.3) and at (1.33) this factor

of order 10 (and 101/2 = 3) we may say that ANK34 Eqs. (1.31) and (1.33) works
satisfactory with orders of magnitude for both sizes and velocities of Jupiter.
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Fig. 13.7 Irregular vortex
grid in sector 3

Fig. 13.8 Spiral vortices on the surface of the Baltic Sea (ESA)

The next planet Saturn is also big and for it the value γ = 4M 2
ω is also of order

103. Therefore, it has also belts in its temperature latitudes but the one cyclone only
at a pole. The Jupiter’s appearance has a quantity number of irregular feature in a
number cyclones, a single Great Red Spot, but none at Saturn, also with an internal
heat source Fig. 13.9. But both planets have different environment: between orbits
of Jupiter and Mars there is an asteroid belt with occasional very large objects, but
nothing is between Jupiter and Saturn. The encounter of Jupiterwithmultiple-body of
the comet Levi–Schumacher in August 1994 left long-lived traces in its atmosphere.
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Fig. 13.9 Large-scale
vortices near both poles of
Jupiter

So one may say that meteorites could leave their own traces in the atmosphere of the
planet.

The first author has been told not once by his colleagues that in the atmosphere
over sand deserts, and within oceans at the intrusion on them large very cold air
masses forests of convective columns are formed. Our laboratory measurement is
presented at Figs. 13.4, 13.5, 13.6 and 13.7 showing various patterns of convective
regimes give a hope that redetermination of molecular transport coefficients into
large-scale ones may explain as those “forests” but approaching at his age 90 the first
author leaves this problem to the much younger generations.
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Chapter 14
Clouds and Turbulence, Self-similarity,
and Peculiar Invariants

In the mid-1970s, Mandelbrot (1977) introduced the concept of a fractal, a power-
law statistical pattern between two random variables, and the last quarter of the
last century was filled with articles on the results of searches for such patterns, the
values of exponents were given, often without estimating them uncertainties and
discussion of their nature and connection with the general laws of probability theory.
To characterize random figures, it was proposed to use the relationship between the
area of such figures A and the length of their perimeter P. He proposed to calculate
the average radius R = A1/2 of the figure perimeter

P ≡ CRβ. (14.1)

Lovejoy (1982) (LS) took advantage of this suggestion and analyzed satellite
cloud measurements and radar data on rain clouds and found that B = 1.35. He
noticed that this value is very close to 4/3, i.e. only 1/60 less than 1.35. The analysis
(Lovejoy 1982) turned out to be not very complete; no estimates of the pre-fractal
factor B in the formula were not presented by:

A = BPα = B
(
CRβ

)α
(14.2)

and no 95% confidence intervals in determining the value of B. The authors of
Golitsyn et al. (2022) had only Fig. 1 from LS in hand, in which the values of
the areas A were compared to the lengths of the perimeters of the corresponding
cloud fields. Therefore, the experimental data of Fig. 1 from Lovejoy (1982) were
renumbered and calculated a new fractalA = BPα . It was found that α = 1.50±0.03
with a 95% confidence level, and B = 0.15 km1/2. The sizes of the analyzed clouds
ranged from 1 to 1.2·106 km2. From relationship (14.2) under the condition R = A1/2

it follows that

αβ/2 = 1, (14.3)
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Fig. 14.1 Area of rain
clouds (●) and satellite
clouds (◯) as a function of
cloud perimeter. as a
function of cloud perimeter

BCα = 1, (14.4)

i.e. C = B−1/α , and if ±α = 3/2, then β = 4/3 and C = 0.15−2/3 = 3.7km−1/3, all
with 95% accuracy and from experimental data. Figure 14.1 shows the recalculated
data of Fig. 1 from LS in Golitsyn et al. (2022) for the fractal (14.2). The last three
digits given on it gave an arithmetic mean of − 1.91, whence B = e−1.91 = 0.148 ≈
0.15 km1/2. In Lovejoy (1982), the fractal (Mandelbrot 1977) A = BPα was not
noted in any way, although relation (14.2) was clearly known and used by the author
to estimate the value of the index β. Later, modelling numerical calculations of the
cloud shapes (Luo and Liu 2007), which gave β = 1.35 ± 0.1. The very proximity
of the index β to 4/3 clearly worried the scientific community, and in Luo and Liu
(2007) the result of a statistical analysis of the fields of already noctilucent clouds
(von Savigny et al. 2011) was published, which gave the value of β again 1.35.
Therefore, we can think that the proximity of β to 4/3 is a law of nature for random
fields.

The launch in the USA of a special satellite for measuring the geometrical char-
acteristics of clouds (Guillaume et al. 2018) allowed us to establish that the spectrum
of horizontal dimensions of clouds and cloud-free areas in the interval from 1 to
1000 km has a power character with the exponent of degree -1.66, which differs
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Fig. 14.2 Distributions of horizontal lines n(L) for cloud and cloud-free segments, open circles
and gray traces, respectively, top; gray line at the bottom −n(L) = L−β exp

[−(L/Lx)2
]
, where

B = 1.66 ± 0.00 and Lx = 1850 km

only by 1/150 from − 5/3. Figure 14.2 from Guillaume et al. (2018) is probably the
clearest demonstration of the operation in nature of ideas about the local structure
of turbulence not only for the clouds themselves as a passive scalar but also for the
cloud-free dimensions of a clear sky.

To see this, we should use the results of A. N. Kolmogorov and A. M. Obukhov,
stated in Sect. 1.3 (Kolmogorov 1934; Obukhov 1959), practically unknown or
unused in the West, and at us, in particular, for the second moments of the distribu-
tion function of the 6-dimensional random distribution vector time scale p(t, ui, xi)
having the form (1.31)–(1.33), whence follows

τ = (
R2/ε

)1/3
, (14.5)

where ε is the rate of generation/dissipation of turbulence kinetic energy, and R2- is
the mean square of the distance between the observation points.

All the previous formulas (14.1)–(14.5) include only the length dimension in
some degree α or β. Therefore, the dimension formulas include dimensional numer-
ical multipliers arising due to the fractal nature of the fields under study. In such a
situation, we need to define the length scale. In the general case, it can be written as:
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Table. 14.1 Data on cloud
fields from Fig. 14.1 of the
article by Lovejoy (1982) and
calculated according to
formula (14.2) for the
perimeter and radius and
formula (14.9) for the
similarity parameter (14.8)

A (km2) P (km) R (km) П

10 16.4 3.16 5.4

102 76.3 10 8.0

103 354 31.6 11.7

104 1640 100 17.2

105 7630 316 25.2

106 35400 1000 37.2

L = (Kt)1/2, (14.6)

whereK is the turbulentmixing coefficient determined by formula (1.32).AtMandel-
brot, themean cloud size is defined as the root of the area, and the perimeter, obviously
larger than Α1/2, is determined by turbulence with time scale τ by (14.5). The area,
on the other hand, grows due to slower processes determined by diffusion, i.e., the
value of A is proportional to time. As a result, we can form a dimensionless similarity
parameter:

� = P

R
= B−1/αA1/α

√
A

=
[
K1τ

K2t2

]1/2

=
(
a
(
R2/ε

)1/3

t

)1/2

, (14.7)

where α = K1/K2—is the ratio of the diffusion coefficients for perimeter and area,
and both of these quantities are estimated below frommeasured cloud field data. The
resulting similarity number is:

� = P/R = (
B−1/αA1/α

)
/A1/2 = B−1/aAn, n = 1/a − 1/2,

and if α = 3/2, then n = 1/6. When B = 0.148 ≈ 1.50 km1/2 and C = 3.54km−1/3

we get with 95% confidence

� = 3.54A1/6. (14.8)

The similarity parameter increases with the size of the cloud A1/6 ∼ R1/3 as
illustrated by the proximity of β to 4/3.

The main hypothesis for obtaining all the results, formulated by Kolmogorov, is
the Markov property of the forces (accelerations) acting in the system, and the entry
for the probability distributions of the 6-dimensional vector p(t, ui, xi) in the form of
the Fokker–Planck–Kolmogorov equation in the form (1.29). A. M. Obukhov found
the second moments of the distributions of the vector p(t, ui, xi) and determined the
time scale (14.5), which describes the structure of turbulence in the inertial interval
and the Richardson–Obukhov law for vortex mixing. Further, here, using similarity
considerations, the length scale is determined, and processing with its help the fractal
patterns of the analyzed fields for tropospheric and noctilucent clouds leads to the
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same fractal indicator in the power-law dependence of the cloud perimeter on its
average radius. Thus, it is the result of random movements of the 6-dimensional
vector ui, xi. This movement is characterized by two interconnected fractal relations
(14.3) and (14.4). In this case, not only the indicators of these fractals are connected,
but also pre-fractal factors with the corresponding dimensions, fractional dimensions
of length L. In the notation introduced by Maxwell, [B] = L1/2, and [C] = L−2/3.
Meaning that B = 4/3, and α = 3/2. Unfortunately, in Lovejoy (1982) and subse-
quent articles the second fractal between area and perimeter is not even mentioned,
although the relation β = 2/α is used in von Savigny et al. (2011). Apparently, 4/3
is more attractive to those familiar with small-scale turbulence than 3/2.

Thus, we can accept that, within 95% accuracy, all the above numerical relation-
ships are observed, in which fractal exponents and pre-fractal factors participate, and
that these are characteristics of random movements in the spaces of velocities and
coordinates, obtained from the moments of the probability distribution function of
time evolution 6 dimensional vector xi, ui. All this opens up a wide field for research
with the introduction, for example, of internal time correlation for acceleration fields,
as was done in Golitsyn to explain the features of the relief spectrum of the surfaces
of the Moon and planets, as at the end of Chap. 8 of this book.

Equations (1.31) and (1.33) can be used to derive the probability distributions for
energy and areas (lengths l2 = S). The integral distribution, or histogram, has the
dimension of frequency f = 1/t, and the differential distribution for the parameter
A have dimension 1/At. Therefore from (1.31)

N (≤ E) = ε

E
, N (E) = ε

E2
, (14.9)

and from (1.33) we will have

N (S) =
( ε

S

)1/3
, N (< S) = ε1/3

S4/3
. (14.10)

These are distributions for areas. In Guillaume et al. (2018) the differential distri-
butions for lengths l = S1/2 of clouds are presented N (l) = l−n exp

(−l2/L20
)
, n =

1.66 ± 0.00..., L0 = 1850km. Therefore

N (l) = 1

l

( ε

l2

)1/3 ∼ l−5/3,

with excellent correspondence to Guillaume et al. (2018). This 5/3 is not for the
energy spectrum, but for the differential presentation; the histogram for horizontal
lengths of clouds will be ∼ l−2/3. We see that both observational results of Lovejoy
and Guillaume et al. correspond well to theories of turbulence of 1941 and 1934.
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Chapter 15
The Global Sea Level Dynamics

15.1 Detrended Fluctuation Analysis (DFA)
and Multifractal DFA (MF-DFA)

The temporal evolution of the global mean sea level (GMSL) has been recently
studied (Varotsos et al. 2024). This study was performed by using monthly mean
averages derived from two distinct datasets: a reconstructed timeseries and a satellite
altimeter timeseries. To examine the scaling characteristics of the dataset, Varotsos
et al. (2024) employed two establishedmethodologies: detrended fluctuation analysis
(DFA) and multifractal DFA (MF-DFA). The key finding of this study was that both
timeseries of the global average sea level exhibit power-law long-range correlations
as well as multifractality. Interestingly, the scaling features of the 134-year and the
most recent 28-yearGMSL-datasetwere remarkably found similar, indicating that the
long-range correlations may primarily arise from factors of nature. This highlighted
the need for further extensive research on the association among the fluctuations of
climate change and sea-level, as their indirect processes have significant implications
for ecology and conservation.

Recently several investigations have aimed to explore the sea-level scaling evolu-
tion observed. These studies have focused on exploring the potential for long-range
dependence, self-similarity, and fractal behaviorwithin sea-level dataset. The concept
of “long-range dependence” refers to a quantity’s property where certain values
remain correlated with each other even after a significant period of time has passed.
On the other hand, “self-similarity” and “fractal” imply that a dataset exhibits simi-
larities or patterns that resemble a part of itself (Varotsos et al. 2013). About this,
Fraedrich and Blender (2003) conducted a study on temperature temporal correla-
tions over the oceans, which is considered a fundamental thermodynamic quantity
influencing dynamic sea-level changes. The findings revealed a scaling exponent that
was nearly equal to unity, indicating a long-term dependence.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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The investigation conducted by Varotsos et al. (2024) was largely centered on
analyzing the long-range correlation (LRC) and multifractal characteristics of two-
time datasets, namely the satellite altimeter dataset (SAD) and the reconstructed
dataset (RD). To achieve this, they utilized the DFA and MF-DFA techniques, as
introduced by Peng et al. (1994).

To examine the multifractal characteristics of the dataset, the MF-DFA method
was employed. The steps involved in this process are outlined below:

(1) The differences between the N measurements of y(i) and their mean were first
used to integrate the time series y(i) over time.

(2) Subsequently, the integrated dataset x(i), was split into distinct intervals with
a length τ . After that, the algorithm was run again, this time beginning at the
end of the profile, resulting in 2Nτ intervals (where N τ represents the integer
portion of N /τ).

(3) Next, each interval’s polynomial least-square fit (of order l) had to be found, and
the associated variance had to be computed using a set of formulas (Kantelhardt
et al. 2002):

(a) for each interval j = 1, . . . ,Nτ :

F2(j, τ ) = 1

τ

τ∑

t=1

[
x((j − 1)τ + i) − t(i)

]2
(15.1)

(b) for each interval j = Nτ + 1, . . . , 2Nτ :

F2(j, τ ) = 1

τ

τ∑

i=1

[
x((N − j − Nτ )τ + i) − t(i)

]2
(15.2)

where t(i) is a locally best polynomial fitted trend (of second degree) to
the τ data.

(4) By averaging the variances in each interval, the q-th order fluctuation function
was calculated, where q is the variable moment:

Fq(τ ) =
⎡

⎣ 1

2Nτ

2Nτ∑

j=1

[
F2(j, τ )

]q/2
⎤

⎦
1/q

(15.3)

When q → 0, Eq. (15.3) takes on the following form:

F0(τ ) = exp

⎡

⎣ 1

2Nτ

2Nτ∑

j=1

ln
[
F2(j, τ )

]
⎤

⎦ (15.4)
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(5) Finally, Fq(τ ) was plotted against vs. τ (in log–log graph) for various q values.
When there is multi-scaling pattern, Fq(τ ) exhibits a power-law, where h(q)
stands for the generalized Hurst exponent.

Fq(τ ) ∼ τ h(q) (15.5)

Furthermore, a multifractal series was characterized by deriving the singularity
spectrum f (n) from h(q) via the modified Legendre transform, where n represents
the singularity strength or Hölder exponent (Kantelhardt et al. 1999).

It is important to remember that the DFA tool, which is mainly used to analyze
mono-fractal features, is extended by the MF-DFA technique (Peng et al. 1994).

The fluctuation function is computed by the original DFA tool. Equation (15.3)
is used to calculate Fd (τ ) for q = 2 and a first-degree fitted trend. This computation
is carried out starting at the end of the profile and without having to repeat the
methodology, that is to say,

Fd (τ ) =
⎡

⎣ 1

Nτ

NT∑

j=1

[
F2(j, τ )

]
⎤

⎦
1/2

(15.6)

In the case of a fractal series, it is expected thatFd (τ ) exhibits a power-law pattern
(i.e., Fd (τ ) ∼ τ a) where a represents the monofractal exponent. If the a-exponent
fallswithin the region (0, 0.5), power-lawanticorrelations (antipersistence) are found.
On the other hand, an a-exponent value in the region (0.5, 1.5) indicates long-range
power-law correlations (persistence). The series is classified as white noise when
a = 0.5 and as 1/f noise when a = 1. A process with a frequency spectrum in which
the power spectral density is inversely proportional to the signal frequency is known
as 1/f noise, also known as pink noise.

In real systems, the scaling results of the DFA method can be distorted by the
existence of trends in noisy signals. Hu et al. (2001) carried out a thorough investi-
gation into how trends affect DFA outcomes. Both the GMSL dataset (obtained from
the reconstructed timeseries and satellite altimeter data) were first detrended using a
sixth-order polynomial best fit in order to avoid such interference. The Wiener filter,
which offers an estimate of a random pattern through linear time-invariant filtering,
was thenused to performdeseasonalization (Wiener 1950). It is noteworthy to empha-
size that the time series under examination retained the pertinent long-term oscilla-
tions and the sixth-order polynomial fitting produced the most significant results (at
a 95% confidence level).
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15.2 The Multifractality of the Global Mean Sea Level
from Satellite Altimeter Data

For variousmoments q, the fluctuation functionFq(τ ) can be estimated using theMF-
DFA technique. This method demonstrated the expected power-law scaling behavior
(i.e., Fd (τ ) ∼ τ a), for all selected positive (negative) moments q (see Fig. 15.1a) on
large scales τ > 8 months (τ > 12 months) when applied to the D&D GMSL time
series derived from SAD (Varotsos et al. 2024; Ihlen 2012).

The generalized Hurst exponent h(q) was plotted as a function of q-values in order
to verify themultifractality of the analyzed time series (see Fig. 15.1b). Exponent h(q)
values for the GMSL time series exhibit multifractal behavior and persistent LRC,
as evidenced by their variation with q and higher-than-0.5 values. Additionally, it
was noted that lower h(q)-values were correlated with larger fluctuations (positive
q-values), which is consistent with the usual features of multifractal time series.

Themultifractality found inGMSLhas the potential to greatly advance our knowl-
edge of science today. We have additionally plotted the singularity spectrum f (n)
against the singularity strength n to offer a more thorough explanation of this feature.

The maximum value of f (n) is associated with q = 0, and the values of f (n) that
lie either side of the maximum signify positive or negative moments (Fig. 15.1c). It is
crucial to underline and make clear that the right mathematical strategy for revealing
the fractal nature of geophysical parameter evolution, like GMSL, is to combine the
MF-DFA tool with the two Maraun criteria (Varotsos et al. 2024).

Fig. 15.1 a An examination of the generalized Hurst exponent h(q) and the MF-DFA fluctuation
factor Fq(τ ) for the D&D GMSL time series (SAD) spanning 1993 to 2020. For all chosen positive
(negative)moments q, the log–log plot in a illustrates the power-law scaling behavior ofFd (τ ) ∼ τ a

at large scales τ > 8 months (τ > 12 months). On to b, where scales ranging from 6 months to
6.3 years are used to illustrate how h(q) depends on q-values. Lastly, the relationship between the
singularity strength n and the singularity spectrum f (n) is demonstrated in c (Varotsos et al. 2024)
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15.3 Conclusions on the Multifractality of the Global Mean
Sea Level

The analysis by Varotos et al. (2024) yielded the following primary conclusions:
A scaling exponent a = 0.77 ± 0.02 (a = 0.76 ± 0.02), is obtained by applying

the DFA technique to the D&D GMSL datasets from the satellite altimeter time-
series (reconstructed timeseries) for the years 1993–2020 (1880–2013), indicating a
positive correlation between the variations in average sea-level values over shorter
and longer time periods.

Fd (τ ) on large scales τ for all the selected positive and negative moments showed
a power-law scaling behavior, according to the MF-DFA technique applied to both
GMSL datasets used. Furthermore, there was multifractality and persistent long-
range correlations revealed by the higher-than-0.5 h(q) values, suggesting that the
generalized Hurst exponent h(q) depends on q.

The trends and scaling characteristics of the two GMSL datasets were compared
for the shared period, which runs from January 1993 to December 2013. The two-
datasets’ scaling characteristics were similar, indicating that the historical data set
could be utilized in any how to verify the dataset from satellite altimeters.

The multifractality characteristics mentioned above that were found in the GMSL
may add to the current discussion surrounding estimates of both global and regional
mean sea-level rise and aid in integrating a comprehensive understanding for creating
temporary solutions and lessening unavoidable effects (Frederikse et al. 2020;Vahsen
et al. 2023). Accordingly, given the rapid rise in sea level, it is currently impos-
sible to predict how the climate, mangroves, and marshes will evolve in the future.
For instance, salt marshes can react to sea level rise by vertically accumulating,
contracting, and expanding laterally (Roman et al. 2024).
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Chapter 16
The Intrinsic Properties of Precipitation
and Rainfall

16.1 Introduction

Efstathiou and Varotsos (2012) based on the fact that the assessment of prospective
expected rainfall and precipitation, both in the short and long term, is essential, due
to the significant impact their changes can have on socioeconomic and ecological
aspects investigated their intrinsic properties.

Therefore, detrended fluctuation analysis has been utilized to study the temporal
variability of normalized rainfall and precipitation fluctuations in the Sahel. The find-
ings revealed that Sahel precipitation anomalies from 1900 to 2010 display persis-
tent long-range correlations over time lags varying from 4 months to 28 years. This
indicates that there is a power law relationship between the variations in Sahelian
precipitation anomalies over short and long periods. In contrast, Sahelian standard-
ized rainfall anomalies from 1948 to 2001 exhibited behavior akin to an almost
random walk.

These findings may significantly improve both the sophisticated modeling of the
variability of the global climate system and precipitation forecasting. The long-range
correlations seen in historical precipitation data must be reflected in precipitation
forecast models. A forthcoming publication will provide more analysis on this topic.

16.2 Description of the Problem

Over the past ten years, there has been a significant interest in studying the
patterns, periodicities, and similarities of various atmospheric factors. These factors
include ozone content, solar ultraviolet radiation, and properties of solid particles.
Researchers have focused on understanding the behavior of these quantities and their
impact on the environment.
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The study of precipitation has received special attention because there are differing
opinions on how to quantify the impacts of climate change on hydrology.

Several studies havepresented analytical rainfall patterns over different time scales
and regions, such as the whole basin of the Amazon and all of its subbasins. Negative
rainfall trends have been observed in the whole Amazon basin, but the northern and
southern sub-basins show contrasting trends. Other studies have employed spectral
analyses to identify variations in different time scales. Southern Amazonia exhibits
decadal variations, while both interannual and decadal scale variations have been
observed in northern Amazonia. These findings contribute to our understanding of
the complex dynamics of the atmosphere and its impact on the hydrological cycle.

Multichannel singular spectrum analysis was used by Krishnamurthy and Shukla
(2007) to investigate the lagged components of rainfall anomalies in India. Three
enduring components in seasonal monsoon rainfall were found, along with 45 and
20-day oscillations, after they examined gridded daily rainfall data spanning 70 years.
It’s interesting to note that the seasonal mean rainfall was not significantly affected
by the dominant intra-seasonal oscillations that were observed during active and
break periods. On the other hand, the interannual variability of monsoon rainfall was
significantly influenced by the enduring seasonal components.

Ip et al. (2011) looked into the multi-scale variability and trends of North China’s
precipitation data. They examined a long-term historical flood/dryness grade dataset
from 1470 to 2000 as well as a historical series of precipitation data spanning
more than a century. In the precipitation dataset, the study found clear seasonal
variations, a quasi-biennial oscillation, an interannual 4–7-year parameter, and an
interdecadal 19-year pattern. Furthermore, the historical flood/dryness grade time
series revealed a quasi-10-year interdecadal fluctuation, a quasi-24-year portion,
a 50–80-year centurial recurrence, and a 4-to-5-year ENSO interannual transient
response.

Andrade et al. (1998) conducted an earlier investigation on the rainfall scaling
pattern analyzing a long precipitation dataset provided by various weather stations
worldwide. The research indicated that in semiarid regions, droughts follow a power
law fashion. This result implied a relationship between rainfall and the idea of self-
organized criticality (SOC),where small-time interval fluctuations are linked to larger
time interval fluctuations in a power law fashion (as seen at the critical point during
phase transitions) (Turcotte 1999). In non-equilibrium systems with a high degree
of nonlinearity, like the complex climate system, SOC is usually observed.

The primary objective of the research implemented by Efstathiou and Varotsos
(2012)was to analyze the variations in Sahel precipitationfluctuations (Sahel normal-
ized rainfall) within the geographical coordinates of 20° N–10° N and 20° W–10° E,
spanning from January 1900 to October 2010 (specifically over 20° N–8° N and 20°
W–10° E, from January 1948 to June 2001). Briefly, the study aimed to determine
if these fluctuations demonstrate persistent long-term correlations. Additionally, the
study seeks to explore how rainfall and anomalies in precipitation are distributed
throughout the Sahel.
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16.3 Methodology and Analysis

The monthly average values of the Sahel precipitation anomaly (SPA) above the area
20° N–10° N, 20° W–10° E, were utilized in this study by Efstathiou and Varotsos
(2012). The period covered by the data was January 1900–October 2010.

To assess the data homogeneity in both 1900 and 2010, we employed the nonpara-
metric Mann–Whitney test. This test compared different segments of the time series
to determine if they followed the same distribution structure. The normalizedMann–
Whitney parameter V in each of these individual tests remained below 1.96, the 95%
confidence interval’s lower bound.

This result indicates that the data is homogeneous. The Global Historical Clima-
tology Network (GHCN) V2 monthly timeseries from the National Oceanic and
Atmospheric Administration (NOAA) provided the data for this study. This time-
series includes gridded anomalies of precipitation and is based on data from 20,590
raw precipitation stations (without homogeneity adjustments) worldwide and 2,064
precipitation stations (from the USA, Canada, and the former Soviet Union). All the
gridded fields underwent homogeneity testing, and in cases where no homogeneity-
adjusted data was available, the GHCN raw data with the greatest possible global
coverage was utilized.

Every month, 2,592 gridded data points (72 longitude × 36 latitude grid boxes)
are generated for the entire world on a 5× 5 degree scale. The information covers the
period from January 1900 to this month. Using the classic anomaly method, gridded
precipitation anomalies were obtained from averaged station anomalies within each
5× 5 degree grid box based on the 1950–1979 period. The same procedure was used
to compute anomalies from raw station data for grid boxes without adjusted data.
Without any homogeneity adjustments, the SPA measurements used in this survey
were obtained from raw precipitation stations.

The average Sahel region was calculated using a rotated principal component
analysis of African precipitation, as suggested by Janowiak (1988). Our inquiry was
restricted to this particular region because historical records were available here.
Additionally, the Sahel standardized rainfall (SSR) average monthly values for the
regions 20° N–8° N and 20° W–10° E from January 1948 to June 2001 were used.
The NOAA Earth System Research Laboratory-Physical Science Division website
provided the source of this timeseries.

In their time series, the average monthly SPA and SSR values showed a slight
long-term trend and high seasonality (Fig. 16.1). Using particular statistical tech-
niques, these features were removed by detrending and deseasonalization. While
deseasonalization was accomplished by using the classical Wiener method (1958)
to eliminate seasonal changes such as 6-month and 12-month oscillations, a quasi
38-year portion, and a 50–55-year periodicity, detrending involved subtracting the
average monthly SPA values from their linear best fit.

Then, taking into account the non-stationarities in the data, a novel statistical
method called detrending fluctuation analysis (DFA) was applied to the detrended
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Fig. 16.1 Temporal sequence of the average monthly a SPA values from January 1900 to October
2010 and b SSR values from January 1948 to June 2001

and deseasonalized average monthly SPA and SSR time series to examine their
intrinsic properties.

However, a challenge with traditional time series analysis techniques is that noise
in the data fails to differentiate attenuation shapes at long lags. DFA provides an
efficient way to observe the autocorrelation decay pattern over time, which was the
primary driving force behind this research. The DFA method, rooted in random
walk theory, enables the identification of intrinsic self-similarity in non-stationary
time series commonly found in various research fields. The sequential steps of DFA,
proven effective in analyzing complex systems with self-organizing property, are
detailed in Varotsos et al. (2007).

16.4 Interpretation of the Results

To examine their distribution, the average monthly values of SPA and SSR were
divided into equal-length classes. The smoothed line of the Gaussian distribution and
the percentage relative frequencyhistogramof themeanmonthlySPAandSSRvalues
x (centimeters per month) are shown in Fig. 16.2. However, after performing statis-
tical best-fit tests like Chi-square, Anderson–Darling, and Kolmogorov–Smirnov, it
was found that, at a 95% confidence level, the hypothesis that the SPA or SSR values
follow a normal distribution was rejected.

Looking at Fig. 16.2, it is clear that the main cause of the poor fit of the normal
distribution on SPA and SSR appears to be the “mode” of the values or the value that
occurs themost frequently in a dataset (− 0.061 and− 0.13 for SPA and SSR, respec-
tively). Furthermore, an evaluation was conducted on the SPA and SSR timeseries to
determine if they conformed to an exponential, geometric, simple power law, gener-
alized power law (also known as the Zipf-Mandelbrot), or lognormal distribution.



16.4 Interpretation of the Results 165

Fig. 16.2 The average monthly percentage relative frequency histogram for a SPA values x from
January 1900 to October 2010 and b SSR values x from January 1948 to June 2001. The normal
distribution is shown by a smooth line

Nevertheless, there was no statistically significant conformance to the previously
mentioned distributions in the observed data.

Plotting a semilogarithmic graph of the probability P(X > x) of exceeding a
given value x allowed for the determination of the distribution of Sahel precipitation
anomalies. By applying linear regression analysis, a statistically significant associ-
ation was discovered among the probability P(X > x) and the precipitation values.
This relationship follows the Gutenberg Richter law for values higher than the mode
of the data. The correlation between the empirical and semi-log distribution was
confirmed using statistical tests at a 95% confidence level according to:

P(X > x) ∼ 10αx. (16.1)

Equation (16.1) states that SPA (SSR) values that are greater than the data’s mode
fall into the Gutenberg-Richter law’s distribution (Goldstein et al. 2004; Rundle
1989). This finding Fig. 16.3 was validated through the use of the Kolmogorov–
Smirnov statistical best-fit test at a 95% confidence level. Additionally, Fig. 16.4
demonstrates a clear correlation (r = 0.99) among the cumulative function of the
empirical and semi-log shape for both SPA and SSR tineseries.

As was previously mentioned, there is currently a lot of interest in the rainfall
index’s scaling behavior. Numerous regions’ worth of extensive data analyses have
revealed the existence of self-similarity in the precipitation and other hydrologic
variables’ time series and spatial fields (Zhu and Liu 2003). The DFA method was
applied to the detrended and deseasonalized mean monthly SPA values from 1900 to
2010 to examine the intrinsic properties of precipitation. With a scaling exponent of
α = 0.59 ± 0.01 for all time lags from 4 months to 28 years, persistent long-range
power-law correlations were found (Fig. 16.5).
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Fig. 16.3 Plotting a fixed SPA and SSR value x on a semilogarithmic graph, with the empirical
probability P(X > x) of exceeding the value. The lines show the SSR values over the mode of
each dataset a y = − 0.26x − 0.66 with R2 = 0.99 and b y = − 0.62x − 0.56 with R2 = 0.99,
respectively and the least-square fit for the SPA

Fig. 16.4 The cumulative function consists of the actual and anticipated distributions of the average
monthly values of a SPA values (x) from January 1900 to October 2010, and b SSR values (x) from
January 1948 to June 2001

In plainer language, it was discovered that there was a power law pattern of
positive correlation between the variations in SPA over shorter time intervals and
those over longer time intervals. Compared to the spectrum characteristics of other
meteorological data, this behavior is very different. The data suggests that the SPA
time series exhibits long memory and is related with fractal behavior. It is crucial
to note that long-range dependence and “long memory” are equivalent ideas (e.g.,
Varotsos 2003, 2005; Varotsos and Kirk Davidoff 2006; Varotsos et al. 2006). More
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Fig. 16.5 The log–log fit of the root-mean-square fluctuation function (Fd (τ )) against the temporal
interval τ (measured in months) is presented for the detrended and deseasonalized dataset of the
average monthly SPA values (a) and SSR values (b) along with the corresponding best-fit equations
(y = 0.59x − 0.48 with R2 = 1 and y = 0.49x − 0.79 with R2 = 0.99, respectively)

precisely, a power law relationship seems to be followed by the averaged square of
the detrended fluctuation function F(τ) spanning N /τ intervals with length τ .

〈F2(τ )〉 ∼ τ 2α (16.2)

According to Kantelhardt et al. (2002), the power spectrum function fluctuates
with S(f ) = 1/f β , where β = 2a−1. It is noteworthy to emphasize that the SSR’s α

exponent is roughly 0.5 (α = 0.49 ± 0.01), suggesting a random walk-like pattern.
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Chapter 17
The Global Vertical Atmospheric Ozone
Long-Memory

17.1 Column Ozone Variability and Power-Law

The first use of detrended fluctuation analysis was carried out by Varotsos (2005) on
daily column ozone (also known as total ozone, or TOZ) in the springtime along the
border and inside theAntarctic ozone hole. Thiswas accomplished by combining data
from satellite-borne instruments from 1979 to 2003 with ground-based observations
from 1972 to 2003.

The results can be summed up like this. Extreme column ozone fluctuations were
first seen to follow a power-law distribution with exponents, suggesting that substan-
tial fluctuations are more likely to occur inside the ozone hole than on its periphery.
Moreover, on time scales longer than a year, there were more pronounced long-range
power-law correlations in column ozone fluctuations from 1979 to 1992. Neverthe-
less, antipersistence (persistence) was found for time lags more than (less than) ten
days across the board in the dataset after the long-term trend was eliminated. This
transition demonstrates how planetary waves affect the scaling characteristics of
the Antarctic ozone hole’s spatiotemporal variability. Lastly, a shift in the intrinsic
dynamics of column ozone along the border of Antarctica has been noted since 1996,
which is not observed in the Antarctic ozone hole.

17.2 How Likely Are the Antarctic Column Ozone Extreme
Values to Occur?

The ozone hole over Antarctica is a phenomenon that has captured global attention.
Nowadays it is considered among the serious environmental problems. In September
2002 the ozone hole displayed a transient phenomenon breaking up into two holes
as a result of an extraordinary major sudden stratospheric warming over that region
(e.g., Varotsos 2002, 2003, 2004).
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Fig. 17.1 The empirical probability to observe TOZ fluctuations with amplitude larger than some
value x = |yi+1 − yi|. An asymptotic power law scaling is found for fluctuation amplitudes between
10 and 15 DU, during a 1979–1992 and b 1996–2003 (Varotsos 2005)

Varotsos (2005) calculated the empirical probability Prob (X > x) to witness
TOZ fluctuations with an amplitude greater than a certain value x = |yi+1 − yi| in
order to address these extreme phenomena. Next, Fig. 17.1a (1979–1992) and 17.1b
(1996–2003) plotted the acquired result. These distributions’ tails show coherence
with a power law, Prob (X > x)−x−μ, suggesting that probability decreases as TOZ
fluctuations become more intense.

We estimated μ = 5.12 for Fig. 17.1a and μ = 4.60 for Fig. 17.1b using a linear
least-squares fit, taking into account the amplitudes of oscillations between 10 and
15 DU (2σ ), or about (e.g., 100 DU—Dobson Units) = 1 mm thickness of pure
ozone on the Earth’s surface.

Both the TOZ fluctuations’ distributions are non-Gaussian and non-symmetrical
(small positive skewness). A linear least-squares fit yields an estimate of μ = 3.81
for the period 1979–1992 and μ = 2.77 for 1996–2003, where TOZ fluctuations
vary from 20 to 40 DU. The tails of these distributions follow a power law Prob
(X > x) − x−μ. Large TOZ changes are more likely to occur at 87.5°S (20–40 DU)
than at 62.5°S (10–15DU), according to a study of the μ-values at 62.5°S and 87.5°S.
It is important to highlight that the µ-values for both latitudes are outside the range for
stable Levy distributions (0 < µ < 2) or Gaussian distribution (μ = 2) (Ausloos
and Ivanova 2001). Consequently, large TOZ fluctuations are more probable than
what a Gaussian distribution would anticipate in both time periods.

17.3 Scaling in Column Ozone Fluctuations

In Fig. 17.2a, the function below is displayed when using the above-mentioned two
TOZ time-series:
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Fig. 17.2 DFA-function for the TOZ data from a 1979–1992 and b 1996–2003 in a log–log plot
(Varotsos 2005)

Fd =
√〈

F2(τ )
〉

The function roughly mimics Brownian noise at a time interval of around 4 days
to 4 months (one year in this case), according to the value of a1 = 1.475 (˧1.5).
Moreover, the oscillations of the function Fd exhibit a distinct crossover at a year.

A crossover to a2 = 0.6 is seen when looking at time-scales longer than a year,
particularly those around four years. This implies that with time lags longer than a
year, there may be long-lasting long-range power-law correlations in the variations
of TOZ.

The DFA results for the second period are shown in Fig. 17.2b. The value of a1 in
this instance is roughly equal to that of the first dataset (1.473), demonstrating once
more the existence of Brownian noise in the TOZ fluctuations for time lags shorter
than a year. On the other hand, a2 = 0.91 (∼ 1) is discovered for time lags of more
than one year, indicating that the TOZ variations for time lags longer than one year
most likely correlate to 1/f noise shape. Thus, the primary inference made from the
TOZ data at 62.5°S is that, while there are fluctuations that presumably fluctuate
between white and Brownian noise during the ozone recovery era of 1996–2003,
stable long-term correlations in the TOZ variations predominate during the period
of 1979–1992.

The DFA approach was applied to the available daily zonal mean TOZ measure-
ments for the months of October through November during 1979–1992 and 1996–
2003, in order to investigate the temporal correlations of TOZ fluctuations for the
inner half of the Antarctic ozone hole at 87.5°S. The function Fd once again closely
resembles Brownian noise (a1 = 1.53) during the years 1979–1992, and this is true
for a time interval of roughly 4 days to 2 months (one year in this example). A
crossover to a2 = 0.6 is shown at time-scales longer than a year, i.e., approximately
four years, suggesting the existence of long-term correlations that are consistent in
the TOZ variations over time delays greater than a year.

A value of a1 = 1.50was noted for the period 1996–2003, suggesting the existence
of Brownian noise in the TOZ fluctuations for time lags shorter than a year. On the
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other hand, a value of 0.93 (∼ 1)was found for time lapses longer than a year, which
most likely corresponds to 1/f noise.

Similar outcomes were achieved when employing the DFA technique on the daily
average TOZ data for the Faraday (nowVernadsky) andHalley ground-based stations
situated on the periphery of Antarctica (65°S and 75.5°S, respectively) within the
O3 hole region. The results derived by both a1 and a2 values of the DFA analysis
performed atthe aforementioned datasets are consolidated in Table 17.1, indicating
that in both time periods the a-values are:

1.0 < α1 ≤ 1.5 and 0.5 < α2 ≤ 1.0.

The initial relationship implies the existence of enduring long-range correlations;
specifically, a1 = 1.5 represents Brownian noise. On the other hand, the subsequent
relationship (for a2) suggests the presence of enduring long-range power-law corre-
lations from 1979 to 1992 for time lags exceeding one year; a2 = 1.0 (predominantly
observed from 1996 to 2003) corresponds to 1/f noise.

To summarize, fluctuations in springtime TOZ at the periphery and within the
Antarctic ozone hole display persistent scaling behavior for time lags surpassing one
year. Notably, since 1996, TOZ fluctuations exhibit correlations primarily character-
ized by noise. This highlights the challenge in resolving the issue of the recovery of
the Antarctic ozone using raw TOZ observations.

Now let us examine whether the dynamics of the Antarctic O3 hole have changed
since 1972. A topic of great interest is the varying times at which the “ozone recov-
ery” emerged. Within the available dataset, Varotsos (2005) also sought to ascertain
whether the scaling patterns of themost current Antarctic TOZdata are different from
those of earlier years. Varotsos (2005) used the multifractal DFA (MF-DFA) (see
Chap. 15) to accomplish this. Compared to traditional DFA, this approach involves
two extra phases, which are briefly explained below:

(i) computing the qth-order fluctuation function for multiple scales l by averaging
across all intervals l:

Fq(l) =
{
1

N

N1∑
v=1

[
F2(l, v)

]q/2
}1/q

Table 17.1 The power law of the DFA function for the TOZ fluctuations at the edge and in the
Antarctic ozone hole, with a crossover at one year, and its two exponents, a1, a2

Latitude (°S) 1979–1992 1996–2003

α1 α2 α1 α2

87.5 L5 0.6 1.5 0.9

75.5 1.2 0.8 1.4 1.0

65.0 1.3 0.8 1.3 1.0

62.5 1.5 0.6 1.5 0.9
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(ii) for each q, plot log Fq(l) vs logl to determine the relationship:

Fq(l) ∼ lh(q)

We were able to draw conclusions that were in line with earlier research by
examining the preliminary springtime daily average TOZ readings from the Faraday
station at the border of Antarctica (65°S) between 1972 and 2003. For scales longer
than ten days, the MF-DFA analysis of the TOZ changes from 1996 to 2003 showed
statistically significant differences from the previous sub-series. This suggests that
since 1996, the intrinsic dynamics of TOZ at Antarctica’s edge have changed.

When the MF-DFA method is applied to the interim springtime daily mean TOZ
values for the Halley station (75.5°S) in the interior region of Antarctica between
1972 and 2003, the same results for a-values are found. However, over time scales
longer than ten days, there is no appreciable variation in the MF-DFA functions of
TOZ fluctuations between the three time periods. This suggests that, at time periods
longer than ten days, the intrinsic dynamics of the TOZdataset inAntarctica’s interior
have not changed since 1972.

17.4 Scaling Effect in Planetary Waves Over Antarctica:
Impact on Ozone

Planetary wave-breaking can be compared to the breaking of ocean waves on a shore.
Charney and Eliassen (1949) utilized a basic linear barotropic beta plane model to
simulate stationary planetary waves in the troposphere. They hypothesized that these
waves were induced by a consistent eastward wind blowing over the surface topog-
raphy.Additionally, Smagorinsky (1953) considered the impact of thermal sources on
wave generation. Subsequently, Charney and Drazin (1961) analyzed stratospheric
planetary waves, including stationary waves, using the quasi-geostrophic theory on
a beta-plane. Matsuno (1970) conducted a quantitative analysis of vertically propa-
gating stationary planetary waves in the stratosphere (waves 1 and 2) by employing
a linearized quasi-geostrophic potential vorticity equation. Notably, linear models
of planetary disturbances in the middle stratosphere suggest that the disturbance
amplitudes do not increase indefinitely over time (stable disturbances). However,
the linear theory predicts a range of disturbances with amplitudes that grow without
bounds (unstable disturbances). According to Charney and Stern’s theorem (1962), a
crucial condition for the instability (barotropic or baroclinic) of a basic zonal flow on
a beta plane to conservative quasi-geostrophic disturbances is a change in the basic
northward quasi-geostrophic potential vorticity gradient within the flow domain.

The DFA tool was utilized by Varotsos et al., (2008) to analyze the total ozone
planetary waves 1 and 2 in the middle and high latitudes of the southern hemisphere.
These waves were obtained from daily observations of total ozone using the TOMS
instrument since 1979. The primary objective of this analysis was to investigate
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the ozone layer as a system that remains unchanged across a wide range of scales
characterized by a fractal structure. Additionally, the study aimed to determine the
presence of long-range correlations.

The findings indicate that fluctuations in the amplitude ofwave 1 exhibit persistent
long-range power-law correlations for time scales exceeding 4 days but less than 3
months. This suggests a close relationship between fluctuations in shorter and longer
time intervals, following a power-law pattern within the range of approximately
4 days to 3 months. Conversely, the analysis of wave 2 revealed the absence of
long-range correlations.

17.5 Scaling in Column Ozone at the Region 60°S–60°N

In order to detect long-memory processes, Varotsos and Kirk-Davidoff (2006)
analyzed global column O3 and tropospheric temperature measurements gathered
from ground-based (1964–2004) and satellite-borne (1978–2004) instrumentation.

It was found that there was a power-law positive correlation between tempera-
ture and ozone fluctuations throughout a range of time periods. Across longer time
periods, the exponent of this link was larger in the mid-latitudes for temperature than
in the tropics, and higher in the tropics for ozone. Either stronger positive feedbacks or
more inertia could be the cause of the enhanced persistence that was seen. As a result,
the poleward growth in climate sensitivity predicted by global climate models may
be related to the steeper slope of the temperature power distribution in mid-latitudes
at longer time scales, as opposed to the tropics. Long-range correlation errors can be
found using the detrended fluctuation analysis of both the model and the observed
time series. Accurately representing these flaws would greatly increase reliability in
the modeling of the long-term climate and atmospheric chemistry patterns.

17.5.1 The Temporal Scaling of the Total Ozone Variations

The mid-latitude zone and the extra-tropics were studied by Varotsos and Kirk-
Davidoff (2006), who focused on the TOZ observations for the latitude zones 25°N–
60°N and 25°S–60°S between 1964 and 2004. The analysis of the deseasonalized
TOZ (D-TOZ) observations of the zone 25°N–60°N using DFA-1 demonstrates the
persistence of long-range correlations again.

As Fig. 17.2a illustrates, for time scales less than or equal to two years, the
correlations in TOZ variability show a “stronger memory” at α1 = 1.22 ± 0.04
compared to α2 = 0.63 ± 0.04 (for time scales between approximately two and
eleven years).

Using the first order DFA (DFA-1) on the D-TOZ data fromWDN, a log–log plot
of the root-mean-square fluctuation function Fd (�t) = F(n) is shown across the
zone 25°S–25°N in Fig. 17.2b. Based on α = 1.1 (±0.04), it is inferred that TOZ
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Fig. 17.3 The graph displays a log–log plot of the root-mean-square fluctuation function (Fd ) for
total O3 (TOZ) as a function of the temporal box Δt (measured in months) for deseasonalized TOZ
observations. The data was collected between 1964 and 2004 by the WMO Dobson Network, with
a crossover occurring at �t ≈ 28 months over the mid-latitudes at both hemispheres (a, c) and over
the tropics (b) (Kirk-Davidoff and Varotos 2006)

variations in the tropics exhibit enduring long-range correlations (1/f noise-like) over
a period of about 4 months to 11 years. The detected long-range correlations show
that there are dynamic links between long- and short-term behaviors rather than the
existence of cycles with distinct periodicities (Fig. 17.3).

Figure 17.2c shows the results obtained from applying the DFA-1 approach to the
D-TOZvalues in the latitude range of 25°S–60°S. The endurance of TOZfluctuations
is shown once more. To be more precise, α1 = 1.11 ± 0.02 applies to time spans
shorter than roughly two years, whereas α2 = 0.64 ± 0.06 applies to longer time
scales. As a result, the tropics show almost similar persistence at shorter time scales
but a more marked persistence at longer time scales than the extratropics.

Varotsos and Kirk-Davidoff (2006) applied the DFA-l approach to the identical
D-TOZ time series to confirm the previously described results. The results collected
showed no discernible departures from DFA-1. They looked into whether the persis-
tence in TOZ time series is due to the time development of the TOZ values or the
values themselves to learn more about it. They achieved this by randomly shuffling
TOZ data throughout the tropics using DFA-1. The result was α = 0.51 ± 0.01.
Therefore, the distribution of the TOZ values has no bearing on the persistence in the
TOZ time series, which results from the sequential organization of the TOZ values.
For the TOZ time series over the extratropics and mid-latitudes in both hemispheres,
comparable outcomes were seen.

Furthermore, the log–log plot obtained by applying DFA-1 to the global D-TOZ
data shows that α = 1.1 ± 0.02, suggesting that the global ozone layer’s variability
is dominated by the strong persistence noted previously in the tropics and mid-
latitudes. To summarize, over all-time lags ranging from around 4months to 11 years,
the TOZ oscillations throughout the tropics, extra-tropics, and mid-latitudes in both
hemispheres, as well as globally, show persistent long-range relationships. But with
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time lapses of roughly 2–11 years, its persistence diminishes over the extratropics.
These results are consistent with the first findings reported by Varotsos (2005).

The retrospective time-series of TOZ at Arosa (46.47°N, 9.40°E) and Poluy
River (66.1°N, 68.3°E), which have been recently constructed, have been utilized
by Efstathiou et al. (2009) to identify the presence of long-range correlations. By
employingmultifractal detrended fluctuation analysis on the average yearly values of
the reconstructed total ozone content at both locations, it has been observed that the
fluctuations in TOZ display enduring long-range power-law correlations across all
time lags ranging from 4 to 90 years. Furthermore, when the same analysis is applied
to the yearly increments of the reconstructed TOZ values, it reveals a crossover
point at approximately 11 years. Before the crossover point, the correlations exhibit
persistent long-range power-law correlations, while after the crossover point, they
demonstrate persistent (antipersistent) long-range power-law correlations.

17.5.2 Conclusions on the Column Ozone Scaling

Varotsos and Kirk-Davidoff (2006) have found different results for temperature and
ozone variations in the mid-troposphere. Temperature fluctuations show consider-
able persistence in mid-latitudes and random noise in the tropics, whereas ozone
fluctuations show the strongest persistence over long time scales in the tropics but
are weaker there.

There are several possible explanations for the variations in temperature and ozone
persistence. Stronger positive feedbacks or more inertia typically lead to greater
persistence.Global climatemodels indicate a poleward increase in climate sensitivity,
which may be related to the lower slope of the temperature power distribution in the
tropics over extended periods of time when compared to the mid-latitudes. On the
other hand, while mid-tropospheric temperatures are anticipated to rise consistently
with latitude, this prediction only pertains to surface temperatures.

The fact that jet stream changes have a significant impact on zonal average TOZ
fluctuations in the mid-latitudes explains the latitude dependence of the persistence
in ozone oscillations. The border between higher tropopause heights on the tropical
side (less TOZ) and lower tropopause heights on the poleward side (more TOZ) is
marked by these changes. Since seasonal weather forecast would be simpler in the
absence of such variations, it is anticipated that they will last for only a few months
at most. The TOZ distribution is more strongly correlated with temperature gradients
related to the jet position than it is with temperature, which could account for the
disparity in persistence patterns between ozone and temperature.

Even though there are a number of established linked mechanisms between
temperature and O3, our understanding of the overall effects of these interactions and
feedbacks is still lacking. Away for visually representing the long-range correlations
within data sets is provided by DFA analysis. We have shown that temperature and
total ozone, when averaged over large regions, show remarkably different long-range
correlation patterns over a range of time durations.
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As a result, any model that attempts to predict the overall amount of ozone or
global temperature over a long period of time needs to be able to reproduce the long-
range correlations shown in DFA analysis. The accuracy of model projections about
climate and ozone levels would be more confidently predicted if DFA curves based
on observable data could be successfully simulated.

17.6 Scaling in Tropical Stratospheric Ozone Fluctuations

Varotsos et al., (2017) explored the distinctive characteristics of the intrinsic
dynamics of ozone vertical distribution in the tropical stratosphere using modeled
data. Their investigation involved analyzing the intrinsic scaling properties within
the time series of the tropical monthly mean ozone vertical mixing ratio (VMR)
from 1980 to 2014 at altitudes of 35, 45, and 50 km. The focus of their research was
on identifying potential long-range correlations in the ozone VMR of the tropical
middle and upper stratosphere. The study deliberately refrained from employing a
non-linear regression model on satellite data sets (such as Atmospheric Chemistry
Experiment: 2004–2013, Halogen Occultation Experiment: 1991–2005, and SAGE
II: 1985–2005) due to the significant temporal variability present in these datasets.

The study conducted by Varotsos et al. (2017) utilized the DFA technique to
analyze the tropical monthly mean ozone VMRs from 1980 to 2014. Three model
simulations were employed at altitudes of 35, 45, and 50 km to investigate poten-
tial power-law scaling features. To validate the findings obtained through DFA, the
researchers utilized the autocorrelation function and themethod of local slopes of the
fluctuation functions. The results from the analysis of the three models at different
altitudes did not show evidence of exponential decay in the autocorrelation func-
tion for large scales or constancy in the local slopes within a significant range.
Consequently, the establishment of long-range dependence for ozone VMRs was not
possible.

In summary, the modeled ozone VMRs do not exhibit the same long-range corre-
lations observed in the data from other parameters, such as temperature, at similar
stratospheric heights. This suggests that the observational ozone VMRs may display
a power law scaling effect (long-range dependence) that is not present in the modeled
data. Therefore, accurately quantifying the scaling effect on upper stratospheric
ozone remains a topic of ongoing scientific inquiry.

17.7 Scaling in Surface Ozone Fluctuations

Varotsos et al. (2012) investigated whether surface air pollution entirely vanishes
within a range and looked at the relative predictive power of the pollution at various
time frames. To this goal, the deseasonalized and detrended mean monthly values
of SOC (Surface Ozone Concentration) during the daytime and nighttime periods
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of 1901–1940 and 1987–2007 were analyzed using the DFA approach. Using this
approach, it was possible to find long-term power-law correlations that remained
constant throughout a range of time lags, from four months to ten years (a= 0.76). It
also showed how a fractal structure, which promotes predictability, is linked to long
memory. It was discovered that rather than the distribution of its variations, the long
memory effect in SOC results from its temporal evolution.

Additionally, the characteristics of SOC’s persistence in the beginning of the
twentieth century and the beginning of the twenty-first century were comparable.
This implies that the Athens basin’s industrialization and improvement of in situ
photochemistry had no effect on SOC’s fractal behavior. Furthermore, for both time
periods, there was very little difference between the SOC changes during the day and
the night. These results may aid in the creation of more precise simulation models
that forecast differences in the predictability of surface air pollution and fluctuations
in its levels across various time frames.

Thus, despite its current doubling, Varotsos et al. (2012) proposed that the SOC
variations at Athens since 1900 show long-range dependence (long-memory). Using
new analytical tools, Varotsos et al. (2015) later confirmed the long-memory in SOC
that was postulated by Varotsos et al. (2012).
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Chapter 18
The Air Temperature Scaling Effect

18.1 The Long-Range Correlations in the Tropopause

Varotsos et al. (2009) conducted a study on the fluctuations of tropopause height
across different latitudinal zones in both hemispheres. Between 1980 and 2004, they
looked at the monthly tropopause height anomalies around the world and in seven
latitude zones. These anomalies were found to be non-stationary and comprised
both periodic and aperiodic waves, according to the research. It was found that the
underlying correlations in the observations were frequently hidden by these non-
stationarities. To meet this difficulty, the researchers stressed the necessity of using
a specialist analytical tool.

Time records of monthly anomalies of tropopause height (Z) were investigated
by Varotsos et al. (2009) to explore the existence of long-range relationships in the
tropics. Their goal was to find out if there was any relationship at all between the Z
value at one point in time and its value at another. The discovery that many environ-
mental variables show long-range dependence—that is, that their values continue to
correlate even after a considerable amount of time has passed—led to the question.

To ensure accurate insights into this problem, Varotsos et al. (2009) utilized the
monthly anomalies of tropopause height after removing trends and seasonal varia-
tions. This approach helped avoid obscuring any potential scaling behavior due to
long-term trends orwell-knowncycles. The researchers employedDFA-1 (Detrended
Fluctuation Analysis) to analyze the data of tropopause height anomalies in the
tropics. The results, presented in Fig. 18.1 (left), displayed a log–log plot of the root-
mean-square fluctuation function Fd (�t) = F(n). They came to the conclusion that
Z variations over the equator showed persistent long-range correlations resembling
1/f noise, with an α value of 0.97 (±0.04) for latitude 0°. This link, which lasted
from roughly 4 months to 6 years, was statistically significant.

It should be mentioned that because most water vapor enters the stratosphere
in this region, the 1/f noise fascinating behavior of the tropical tropopause is very
significant. It’s also critical to emphasize that the long-range correlations found show
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Fig. 18.1 Log–log plot of the tropopause height (Z) root-mean-square fluctuation function
(Fd (�t)) for detrended and deseasonalized monthly Z values, recorded by the radiosonde network
over the equator and the world between 1980 and 2004 (Varotsos et al. 2009) versus temporal
interval �t (in months)

that there are dynamic links between actions on both longer and shorter time scales
rather than pointing to the existence of cycles with distinct periodicities.

Subsequently, Varotsos et al. (2009) applied the aforementioned methodology to
analyze the dataset of monthly fluctuations of tropopause height (Z) on a global
scale. The findings, as depicted in Fig. 18.1 (right), reveal a strong persistence of
fluctuations in the average Z of the globe, with a time period ranging around 4
months–6 years (ENSO), approximately, given that α = 0.90 (±0.04).

A study by Varotsos et al. (2009) looked at a number of latitude zones, such as the
high latitudes, mid-latitudes, and subtropics. They specifically examined the Z data
from 1980 to 2004 for six latitude bands in both hemispheres. They discovered that,
as seen in the deseasonalized and detrendedZdata, consistent long-range correlations
are present in all latitude bands of both hemispheres using the DFA-1 approach. As
Fig. 18.2(right) illustrates, the correlations in Z fluctuations revealed that memory
increased from high to low latitudes, with the Northern Hemisphere showing higher
memory than the Southern Hemisphere.

It is noteworthy that the DFA-l approach can be used as a reasonable means
of verifying the previously reported findings. The DFA-l analysis’s findings did
not substantially differ from Figs. 18.1 and 18.2’s results. However, the researchers
looked at whether this persistence comes from the values of Z itself or from their time
evolution to identify the variables leading to the long-range persistence in tropopause
height. They used DFA-1 on randomly shuffled Z data spanning the tropics to inves-
tigate this. With α = 0.51± 0.02 as the analysis’s outcome, it can be concluded that
the distribution of the Z values has no bearing on this persistence, which only results
from the Z values’ sequential ordering.

To summarize, the Z fluctuations show consistent long-range correlations with
time lags ranging fromaround 4months to 6 years throughoutmultiple latitude zones,
including the tropics, subtropics, middle, and polar latitudes of both hemispheres, as
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Fig. 18.2 Tropopause height (Z) root-mean square fluctuation function (Fd(�t)) for detrended
and deseasonalized monthly Z values: a log–log plot of the tropopause height (Z) observed by
the radiosonde network over the tropics, middle latitudes, and high latitudes of the Northern and
Southern Hemispheres between 1980 and 2004 versus (�t)) (Varotsos et al. 2009)

well as globally. Over the tropics, this persistence gets greater as it gets closer to the
1/f mode.
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18.2 The Temporal Scaling of Tropospheric Temperature
Variations

Varotsos and Kirk-Davidoff (2006) also investigated the presence of time scaling
in the fluctuations of tropospheric temperature (TRT), a parameter commonly used
to measure global warming. The researchers utilized data from passive microwave
temperature soundings obtained fromvarious satellites, includingTIROS-N,NOAA-
6 to NOAA-12, NOAA 14, NOAA-15 to NOAA-17, and AQUA, covering the time
period from 1978 to 2004.

In Fig. 18.3b, a log–log plot of the function Fd (�t) is presented, which was
obtained by applying DFA-1 to the averaged D-TRT dataset in pentads of days
within the latitude zone of 25°S–25°N.

The research showed that there were long-range correlations between the TRT
fluctuations for time periods smaller than about two years (α1 = 1.13 ± 0.04). But
at time scales like the El Nino-Southern Oscillation (ENSO), which lasts for around
two to seven years, the fluctuations have a random walk pattern (α2 = 0.50± 0.04).
The crossover point was identified as the moment at which the errors in the two linear
best fits were minimized. This occurred at around two years.

The extratropics and the mid-latitude zone—that is, the areas between 25°N and
60°N and 25°S and 60°S—came into sharper focus after that. DFA-1 was used
to analyze the D-TRT data in both latitude zones (Fig. 18.3a and c). The results
indicated the presence of long-range power-law correlations with α = 0.80 ± 0.01
at time periods spanning from around 20 days to 7 years in both hemispheres.

This suggests that long-range persistence is exhibited by global TRT variations.
These results were validated by additional study using DFA-2 to DFA-7, which
produced α-values varying between 0.78 to 0.86. DFA-1 was also applied on the

Fig. 18.3 The tropospheric brightness temperature (TRT) root-mean-square fluctuation function
(Fd ) is plotted log–log against the temporal interval�t (averaged in pentads of days) for deseasonal-
ized TRT (mid-tropospheric temperature) values as observed by the multi-satellite instrumentation
between 1978 and 2004 (crossover at�t ≈ 28 months over the tropics b) and mid-latitudes of both
hemispheres a, c. Kirk-Davidoff and Varotos (2006)
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shuffledTRTanomalies to confirm the persistence seen earlier, and the results showed
that there were no persistent fluctuations present once more.

18.3 The Long-Range Correlations in the Land-Sea
Surface Temperature

Themeanmonthly land and sea surface temperature (LSST) anomalies from January
1850 to August 2008 were used by Varotsos and colleagues (2009). These datasets
were sourced from the Climatic Research Unit (http://www.cru.uea.ac.uk/cru/data/
temperature/). The terrestrial and marine data were integrated into a single average
to produce a worldwide coverage dataset that included coastal and island gridboxes.

Strongly persistent long-range power-law correlations were found when the
DFA approach was used to the global mean monthly LSST anomalies time series
(Fig. 18.4a); the scaling exponent varied between 0.86 for all time lags between (4
months–39 years) (Fig. 18.4b).

The substantial persistence observed indicates a power-law pattern of positive
correlation between the LSST anomaly variations at small time intervals and bigger
ones (up to 39 years). This finding implies that rather than following the traditional
Markov-type stochastic behavior, which exhibits an exponential reduction with time,
the correlations between thefluctuations inLSSTanomalies showmore slowly fading
correlations. The latter is in line with recent climate model projections, which state
that the higher troposphere should warmmore quickly than the surface. Tropospheric
convection, which in turn depends in part on SST, dynamically results in the cooling
of the tropical tropopause, especially in the tropical zone.

Finally, Varotsos et al. (2009) looked at whether the persistence mentioned above
is caused by the LSST anomaly levels alone, as opposed to their temporal evolution.

Fig. 18.4 a The dataset of the worldwide average monthly LSST anomalies that were detrended
and deseasonalized from January 1850 to August 2008. b The log–log plot of the DFA-function for
the dataset is shown in a with the best linear fit equation y = 0.86 × −1.77

(
R2 = 0.98

)
(Varotsos

et al. 2009)

http://www.cru.uea.ac.uk/cru/data/temperature/
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For example, they used DFA on shuffled data of the LSST anomalies at random, and
the exponent that they got was α = 0.53 ± 0.01. Consequently, the “long memory”
observed in the time series of the LSST anomalies originates from their temporal
evolution rather than their value distribution.

Furthermore, for all time lags between 4 months and 39 years, Efstathiou et al.
(2011) discovered a “long memory” in the global mean LSST anomalies time-series
for themonths of January 1850–August 2008 in both the northern and southern hemi-
spheres. Rather than originating from the values distribution of the LSST anomalies,
these long-range correlations are a result of their temporal history.

18.4 The Scaling Effect in Global Land Surface Air
Temperature

Detrended fluctuation analysis was performed by Varotsos et al. (2013) on the mean
values of LSAT anomalies on an annual and monthly basis in both hemispheres and
the world from 1880 to 2011. Examining the intrinsic dynamical properties was the
goal. The following conclusions were reached after the above-mentioned analysis
and discussion:

1. Globally and in both hemispheres, the time series of mean LSAT anomalies, both
annually and monthly, show a constant power-law scaling. We used the autocor-
relation function and the local slopes of the fluctuation function approach to vali-
date this result. The obtained results show that, at large scales, the autocorrelation
function rejects exponential decay, and the local slopes remain constant within
a sufficient range. Both results support the presence of long-range dependence
(LRD) in the LSAT anomalies, as do the computed error estimates.

2. The a = 0.65 (0.73−0.75) scaling exponents of the annual (monthly) mean
LSAT anomalies are roughly identical in both hemispheres and approach the
a = 0.68 (0.80) scaling exponent of the worldwide yearly (monthly) mean LSAT
anomalies. By contrasting this finding with our earlier finding (Efstathiou et al.
2011) that the LSAT anomalies show a larger scaling exponent (a = 0.89) in
the Southern Hemisphere (SH) as opposed to the Northern Hemisphere (NH)
(α = 0.78), we can deduce that the sea surface temperature (SST) is primarily
responsible for the difference in scaling exponents between sea and land surface
air temperature. In the SH compared to the NH, there is more scaling of the SST.
This result is consistent with the basic knowledge that seas have a larger capacity
to retain heat, which causes them to control land temperature less persistently.

3. The latitude zones 24◦N − 44◦N, 24◦S − 44◦S, 44◦N − 64◦N, 44◦S − 64◦S,
24◦N − 90◦N, and 24 ◦ S−90 ◦ S show consistent power-law scaling in the
yearly average values of LSAT anomalies. With increasing latitude, the scaling
exponents progressively grow and become more noticeable.
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18.5 Symmetric Scaling in Global Surface Air Temperature
Anomalies

The dataset of mean monthly land surface air temperature (LSAT) anomalies,
obtained from the National Aeronautics and Space Administration Goddard Institute
for Space Studies (in 0.01 °C), covering the years 1880–2013, was used by Varotsos
andEfstathiou (2015). The land–ocean temperature index (LOTI),which they derived
from the same source and used over a shared timeframe, was the combined land-
surface air and sea-surface water temperature anomalies. It is commonly known that
when the signal under study incorporates scaling, such as in the following cases, the
power-law behavior for the root-mean-square fluctuation functionFd (τ ) is observed:

Fd (τ ) ∼ τ a

with a self-affinity parameter signifying the long-range power-law correlation and a
as the scaling exponent.

First, the upwardfluctuation functionF+
d (τ ) ∼ τ a+, and the downwardfluctuation

function F−
d (τ ) ∼ τ a−, where a+ and a− are the upward and downward scaling

exponents, respectively, were estimated using the A-DFA technique. Analyzing the
sign of the slope bk of the linear local trend fitted in each box of τ values allows for
trend discrimination. Within the k box of length τ , a positive (resp. negative) trend
is shown when bk > 0 (resp. bk > 0). As a result, the root-mean-square fluctuations
are calculated using:

F+
d (τ ) =

√√√√ 1

M+τ

(k+1)τ∑

i=kτ+1

[
sign(bk) + 1

]

2
[y(i) − z(i)]2 and

F−
d (τ ) =

√√
√√ 1

M−τ

(k+1)τ∑

i=kτ+1

−[
sign(bk) − 1

]

2
[y(i) − z(i)]2,

k = 0, 1, 2, . . . , (M − 1),

where, given that bk �= 0 for all k = 0, 1, 2, . . . , (M − 1),M = M++M− = N/τ ,
denotes the number of boxes with positive (resp. negative) trends.

The autocorrelation function and the technique of the local slopes of thefluctuation
functions (i.e., the two criteria suggested byMaraun et al. 2004) were also employed
to verify the existence of long-range correlations in the time series of LSATanomalies
and LOTI.

First, theA-DFAmethodwas applied to theLSATanomaly time series. Theworld-
wide root-mean-square fluctuation function F+

d (τ ), Fd (τ ),F+
d (τ ) and F−

d (τ ) for the
detrended and deseasonalized mean monthly LSAT anomalies dataset is presented
against the time scale τ (measured in months) in Fig. 18.5a, a double logarithmic
graph. The persistent dynamics are indicated by the DFA scaling exponent a = 0.75.
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Fig. 18.5 a The root-mean-square fluctuation function Fd (τ ),F+
d (τ ), and F−

d (τ ) are plotted twice
logarithmically against the time scale τ (measured in months) for the detrended and deseasonalized
mean monthly LSAT anomalies set (global) using the best-fit equations (logFd (τ ) = 0.75logτ +
0.42 with R2 = 0.994, F+

d (τ ) = 0.77logτ + 0.4 with R2 = 0.98, F−
d (τ ) = 0.73logτ + 0.45 with

R2 = 0.98). b For the detrended and deseasonalized mean monthly LSAT anomalies set (globally),
the root-mean-square fluctuation function Fd (τ ),F+

d (τ ), and F−
d (τ ) versus time scale τ (in months)

(Varotsos and Efstathiou 2015)

Furthermore, concerning Fig. 18.5a, the calculated value of a− = 0.73 appears
slightly lower than the value of a+ = 0.77, suggesting that the decreasing dynamics
of LSAT anomalies are just as persistent as the rising dynamics (a t-test was used to
confirm this similarity, and at a 95% confidence level, the hypothesis a− = a+ was
not rejected). To elaborate, there are no noticeable differences in fluctuation between
F+(τ ) and F−(τ ) across all time scales, indicating a symmetric persistence. The
root-mean-square fluctuation function Fd (τ ),F+

d (τ ), and F−
d (τ ) displayed against

the time scale τ (in months) for the detrended and deseasonalized mean monthly
LSAT anomalies dataset (globally) provides a clearer picture of this symmetry.

The aforementioned findings were also analyzed for the Northern NH and
Southern SH. It was found that there was no notable distinction in terms of the
persistence of increases and decreases in LSAT anomalies. This is due to the fact
that in both hemispheres, the scaling exponents (NH a+ = 0.7, a− = 0.69, and
SH a+ = 0.68, a− = 0.66) were extremely close.

Similar results were obtained by Varotsos and Efstathiou (2015) when applying
the same technique to the LOTI dataset.

To summarize, the examination of the upward and downward scaling patterns of
LSAT anomalies indicates that therewere no notable variations between the increases
and decreases in LSATanomalies across the entire globe andwithin each hemisphere.
Conversely, themerging of land-surface air and sea surfacewater temperature anoma-
lies appeared to disrupt symmetry, with the increases in temperature anomalies of
the land and sea surface showing greater persistence compared to the decreases.
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18.6 The Temperature Scaling Altitude Dependence
at the Global Troposphere

The mean monthly and latitudinal averaged temperature values from different height
layers of the global troposphere from 1980 to 2004 were used by Efstathiou and
Varotsos (2010). The National Oceanic and Atmospheric Administration’s (NOAA)
National Climatic Data Center (NCDC) Integrated Global Radiosonde Archive
provided the temperature readings for these 100 stations. These time series were
chosen with an emphasis on covering various tropospheric height layers, including
850 hPa, 500 hPa, 300 hPa, 200 hPa, 150 hPa, and 100 hPa, depending on the avail-
ability and completeness of the daily data record. For the tropopause height in the
tropics, the 100 hPa level is thought to be a dependable approximation; in the mid-
latitudes, the 200 hPa level is appropriate; and in both polar regions, the 300 hPa
level is a good approximation. The global tropopause temperature can be roughly
estimated from the temperature at 100 hPa.

The link between the DFA-function and the temporal interval (t in months) for
detrended and de-seasonalized temperature readings at two distinct pressure levels—
(a) 850 hPa and (b) 100 hPa—for the years 1980 to 2004 is depicted in Fig. 18.6, a
log–log plot.

Figure 18.7 shows the temperature scaling behavior at different heights in the
global troposphere as a function of altitude. For time lags ranging from four months
to six years, it is clear that the DFA-exponent continuously displays persistent long-
range power-law correlations, with an overall positive trend in altitude that approx-
imates 1/f . Notably, at the vicinity of the tropopause level, the DFA exponent can
be more than unity. The well-known examples of fractional Brownian motion (fBm)
and fractional Gaussian noise (fGn) that are covered in the publications of Varotsos

Fig. 18.6 For the detrended and deseasonalizedmeanmonthly and latitudinal averaged temperature
values at: a 850 hPa (y = 0.78x − 1.55 and R2 = 0.98) and b 100 hPa (y = 1.14x − 1.68 and
R2 = 0.99), during 1980–2004, a log–log plot of the temperature rms fluctuation function Fd versus
temporal interval τ (in months) and the corresponding best-fit equation and correlation coefficient
are shown (Efstathiou and Varotsos 2010)



190 18 The Air Temperature Scaling Effect

Fig. 18.7 The DFA-exponent’s height dependency was observed between 1980 and 2004 for the
detrended and deseasonalized mean monthly and latitudinal averaged temperature data at various
height layers of the global troposphere (where 100 hPa roughly corresponds to the tropopause level)
(Efstathiou and Varotsos 2010)

et al. (2006) and Varotsos et al. (2007) are cited here. In contrast to a fGn, or the time-
series of a fBm’s increments, which is stationary and has a DFA slope of α = H , a
fBm with a particular Hurst exponent H (0 < H < 1) is non-stationary and exhibits
a DFA slope of 1 + H .

Two main conclusions can be drawn from the previous analysis:

• First, at time-scales ranging from roughly four months to six years, the mean
monthly and latitudinal averaged temperature values at various tropospheric
height layers, from 1980 to 2004, exhibit continuous power-law connections. The
DFA-exponent values at different pressure points confirm this finding. Second,
the long-range power-law persistence of the longitudinal averaged temperature
values shows a positive altitude trend, with the regime approaching 1/f noise-like
behavior close to the tropopause level. This suggests that as we proceed from the
surface to the tropopause, the temperature correlation shows increased memory.

• • Secondly, the latitudinal averaged temperature values exhibit a long-range
power-law persistence with a positive altitude trend, where the regime approaches
1/f noise-like behavior close to the tropopause level. This suggests that as we
proceed from the surface to the tropopause, the temperature correlation shows
increased memory.
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These results imply that fractal behavior and longmemory are present in the global
tropospheric temperature. It is crucial to examine the output of current climatemodels
to see if the tropospheric temperature shows a similar scaling behavior.

Several factors can be responsible for the vertical distribution of temperature
persistence that is depicted in Fig. 18.7. Stronger positive feedbacks or more inertia
may be the cause of greater persistence, especially at the tropopause level (Varotsos
and Kirk-Davidoff 2006). Therefore, the upward increase in climate sensitivity
projectedbyglobal greenhouse effectmodels,which is impactedbyheight-dependent
climate feedbacks, may be related to the decreasing slope of the temperature power
distribution in the lower tropospheric altitudes.
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Chapter 19
The Spectral Solar Radiation Variability

19.1 The Long-Range Correlations in the UV Solar
Spectral Irradiance

Varotsos et al. (2013) conducted a study on the configuration of solar irradiance
(SI) using real observations of high resolution. In more detail, they analyzed the SI
discrepancies in the UV spectral region to determine if there is a scaling behavior.
Finding out whether and what kind of association exists between the fluctuations in
shorter wavelength (WL) intervals and those in longer wavelength intervals was the
aim of the investigation.

In their research, Varotsos et al. (2013) presented Fig. 19.1, which displays solar
spectra obtained on a horizontal plane at Briançon (French Alps, 1,310 m asl).

Varotsos et al. (2013) aimed to investigate the correlation between solar flux
variations in short and long wavelength (λ) bands. They sought to quantitatively
analyze these linked variations in the SI spectrum using new tools like the DFA.

It is important to note that Varotsos et al. (2013) focused on the SI structural
pattern rather than its temporal evolution. They analyzed real observations of high
resolution to examine the scaling behavior of SI fluctuations in the UV spectrum. In
essence, their study aimed to determine if there is a correlation between fluctuations
in short and long bands and to investigate the nature of this link.

The recorded observations include both atmospheric extinction and diffuse SI
band. The measurements were taken on a sunny (17 Sept. 2000) and a cloudy (20
Sept. 2000) day with the same solar elevation (SZA055). The key finding from
Fig. 19.1 is that on a sunny day, the diffuse surpasses the direct UVB irradiance.

The analysis of the solar incident flux (SIF) fluctuations across various values of
λ in the Earth’s atmosphere on May 10, 2001, is illustrated in Fig. 19.2.

Analysis of the SIF-WL dataset using the DFA method, covering wavelengths
in the spectral band (278 – 400) nm, showed a consistent long-range power-law
self-similarity behaviour. The scaling observed in Fig. 19.3a indicates a power-law
relationship between changes in solar incident flux across different WL ranges. This
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Fig. 19.1 On September 17, 2000, a clear sky day, the direct a and diffuse b SI spectra were
recorded on a horizontal plane at the ground; on September 20, 2000, an overcast sky day, the
diffuse c SI spectrum was recorded at the same location (Varotsos et al., 2013)

Fig. 19.2 The SIF measurements at the top of the atmosphere against λ (10 May 2001, 7:00 a.m.)
in the spectral region (278 – 400) nm (Varotsos et al. 2013)
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Fig. 19.3 a For the a SIF-WL data set with best-fit equation y = 1.05x + 1.11, R2 = 0.99. For the
b detrended SIF-WL data set with best-fit equation y= 1.02x + 1.15, R2 = 0.98. Double log graph
of the root-mean-square fluctuation function Fd (τ) vs λ interval τ (in nm). The slope values near
unity signify the existence of scaling, or self-similarity; that is, there is a power-law relationship
between the fluctuations in smaller and larger spectral regions, with an exponent around to unity
(Varotsos et al. 2013)

suggests that variations in shorter WL ranges are correlated with those in longer WL
ranges. In essence, the solar flux in the Earth’s atmosphere, as determined by λ in
the UV region, exhibits a fractal structure resembling an irregular geometric shape
where each part mirrors the whole on a smaller scale. Additionally, the proximity of
the a-exponent derived from DFA to unity points towards the presence of 1/f noise.

Varotsos et al. (2013) claim that the significant upward trend of the SIF spectral
distributionmay be the cause of the exponent α’s unity value. Varotsos (2013) carried
out a specific examination of the DFA approach utilizing the detrended SIF-WL
dataset at the top of the atmosphere, within the λ range of 278−400 nm, in order
to clarify this point. It’s interesting to note that all WL delays between 0.2 and 30
nm (Fig. 19.3b) (1/f-type) displayed long-range persistence in the fluctuations of
the detrended dataset, with a scaling exponent α of 1.02 ± 0.02. This demonstrates
that the significant increase trend of SIF vs UV λ is not the only cause of the unity
exponent.

The maximum λ value of 30 nm can be obtained in the manner described below:
The greatest value of τ in Fig. 19.3ba, b has a logarithm of 2.8 (=log600). The
highest value of τ, given the measurement step of 0.05, is roughly equal to τ0 = 0.05
× 600, or τ = 0.05 × 600 = 30 nm. The minor fluctuations in the solar spectrum
inside the Fraunhofer lines, which originate from the outer regions of the Sun and
have significant biological implications, could be linked to this maximum λ value
(Kondratyev and Varotsos 1995, for example). The λ interval of the 1/f behavior seen
in this study is of the same order as the λ separation of the major Fraunhofer lines in
the solar UV spectrum (299.4, 302.1, 336.1, 358.1, 382.0, 393.4, 396.8, and 410.2
nm). This is quite remarkable.
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Varotsos et al. (2013) further proposed that theDFAanalysis result is invariantwith
respect to the sun zenith angle of the UV solar spectral measurement. In particular,
from dawn to sunset, there is 1/f behavior in the variations of UV SI on the ground.
This result is consistent with the deduction made in Sect. 3.1 that the SIF at the upper
atmosphere exhibits 1/f -type behavior.

It is crucial to stress that the original data series’ “roughness” can be gauged
by looking at the similarity exponent. Hence, 1/f noise can be thought of as a
state in between the much smoother landscape of Brownian noise and the total
unpredictability of white noise (a very rough “landscape”).

The result that the solar spectrum irradiance follows a 1/f power-law around UV
λ should be interpreted with the knowledge that Planck’s law converges to the Wien
approximation at short wavelengths. It is possible to express theWien approximation
as:

I(λ,T) = 2hc2

λ5
e−

hc
λkT

where I(λ, Τ) represents the energy emitted at a particular λ per unit area, time, solid
angle, and λ, Τ is the black body temperature, h is the Planck’s constant, c is the
speed of light, and k is Boltzmann’s constant.

Varotsos et al. (2013) used the DFA tool to examine the different values of I(λ,
T ) obtained from the measured UV wavelengths λ after holding the temperature
constant in the equation above. The analysis’s conclusion showed that the computed
I(λ, T ) values deviate from the 1/f -type scaling. Therefore, in order to match the
experimental results reported by Varotsos et al. (2013), the right side of the preceding
equation must be multiplied by a 1/f noise function of wavelength λ. This function
may represent a solar flux-wavelength relationship akin to fBm, which is thought to
be the best mathematical model for 1/f noise according to Mandelbrot and Wallis
(1968).

In conclusion, the UV spectral area shows a strong and permanent structural char-
acter in SIF, which has important ramifications for the climate system, as mentioned
byVarotsos et al. (2013). It has been noted that a power-law pattern frequently occurs
when there is an increase in SIF at one UV λ interval, followed by another increase
at a different λ region.

This nonlinearity, as indicated by statistical tools in modern physics, can aid
in constructing more reliable weighting functions for satellite observations. These
functions are crucial for converting satellite data into accurate measurements. It is
important to note that the estimatedmodel values of solar flux versus λ should exhibit
the same scaling properties as the real data of SIF across various wavelengths. Inter-
estingly, the pattern of SIF in the UV band obeys a 1/f noise type, commonlymeeting
in nature across different fields such as physics, technology, biology, astrophysics,
geophysics, and economics. However, a universally accepted physical explanation
for this phenomenon has not yet been proposed.
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19.2 The Scaling of the Solar Incident Flux

The work of Varotsos et al. (2013a) to establish the conclusion that the solar spectral
irradiance obeys 1/f power-law as a function of UV λ using the well-known Planck’s
law was briefly mentioned in Sect. 19.1:

I(λ,T ) = 2hc2

λ5
(
e

hc
λkT − 1

)

which approaches to the Wien approximation at small wavelengths:

I(λ,T ) = 2hc2

λ5
e−

hc
λkT

where I (λ,T ) is the λ-per-unit surface area, duration, solid angle, and energy emitted
at a λ, the blackbody temperature is T, the speed of light is c, Boltzmann’s constant
is k, and Planck’s constant is h.

Varotsos et al. (2013) showed that the calculated I (λ,T) values do not follow
the 1/f -type scaling vs. Δλ (i.e., for fluctuations in (λ,T ) throughout a range Δλ in
wavelength) by applying the DFA technique to various I (λ,T) values. Therefore,
Varotsos et al. (2013) concluded that the latter may indicate a scaling in fluctuations
of the solar incident flux (SIF) that could be associated with the intricate physical
processes occurring in the solar atmosphere.

Later, Varotsos et al. (2015) attempted to examine the SIF residues concerning
the Planck law in a wider wavelengths window (than in Sect. 19.1), from 115.5 to
629.5 nm.

Figure 19.4a illustrates the SIF observationswithin thewindow (115.5–629.5) nm.
The main point observed is the presence of obvious non-stationarities vs. λ in the SI
distribution and the significant rising trend up to around 450nm. The detrending of
this dataset was achieved following the Planck formula:

B1

(
b1
λ

)5

/

[
exp

(
b1
λ

)
− 1

In this, b1 = 2486.4 nm based on the Sun’s effective temperature (Tsun= 5778K).
The derived parameter was found to be B1 = 85.8 ± 0.7 (0.82%) mWm−2nm−1.
Moving forward, Varotsos et al., (2015) focused on the residuals comparing with the
Planck function represented by the blue line in Fig. 19.4a. Figure 19.4b shows the
results obtained from DFA-n analysis, where the exponent is close to unity.

It should be noted that the DFA tool produces outcomes comparable to those of
the Haar tool, yet conceals the discontinuity that is evident in the Haar analysis (see
Fig. 19.3 in Varotsos et al. 2015). It is important to emphasize that the 1/f scaling
dynamics found in SIF pertain.

The main findings are as follows:
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Fig. 19.4 a The SIF values (red, left scale) at the top of the atmosphere are shown with the fitting
that was employed (green, left scale) and the λ from 115.5 to 629.5 nm. Additionally shown is the
detrended SIF data (blue, right scale). b a log–log plot, for wavelengths between 115.5 and 629.5
nm, showing the root mean square fluctuation function Fd (τ) of the detrended SIF against the λ
segment size. DFA-1, DFA-2, DFA-3, and DFA-4 have respective values of 1.09 (0.04), 1.00 (0.03),
1.01 (0.03), and 0.98 (0.03)

(1) DFA exponents were found to be around to unity. In simpler terms, the SIF
discrepancies around Planck’s law exhibit 1/f scaling dynamics.

(2) Analysis of the power spectral density for the detrended SIF dataset revealed a
power-law shape with an exponent of 0.99 (±0.08). The DFA-1 exponent was
1.09 (±0.04), with DFA-n exponents ranging in (0.98 − 1.01).
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Chapter 20
Scaling of Near-Ground Spectral Albedo
Variability

20.1 Principal Experimental Results on Albedo Features

Varotsos et al. (2013, 2014) revisited the airborne spectral observations of upward and
downward irradiances and concentrated on the dependence of near-ground albedo
on wavelength across the solar spectrum for different surfaces (snow, water, and
sand) and different sky conditions (cloudy or clear). A research aircraft conducting
multiple flight paths close to the groundwas equippedwith a diffraction spectrometer,
which was used to determine the radiative upward and downward fluxes. Contrary
to popular belief, the results showed that the near-ground albedo does not always
increase with longer wavelengths across all surface types. Notably, the albedo of
water surfaces in the ultraviolet spectrum holds steady over time. On the other hand,
the water albedo exhibits an almost constant power-law relationship with wavelength
in the visible and near-infrared spectra. For sand surfaces, the albedo is found to be
a quadratic function of wavelength, with greater accuracy when excluding ultra-
violet wavelengths. Moreover, despite having different magnitudes—water albedo
being lower—the spectral behavior of snow and water are similar, declining by 20–
50% from ultraviolet to near-infrared wavelengths. Interestingly, the albedo of snow
remains nearly constant in the ultraviolet range, while a second-order polynomial
provides the best fit for the visible-near infrared spectrum, similar to sand but with
opposite slopes.

20.2 Dependence of Water Albedo on Wavelength
in the Entire Solar Spectrum

The near-ground albedo values’ variability is displayed in Fig. 20.1, which is based
on radiative upward and downward fluxes recorded between May 13 and May 18,
1984, under clear sky conditions, by a research aircraft operating in close proximity
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Fig. 20.1 Water albedo’s spectrum dependence from the ultraviolet to the near-infrared. Dark green
squares: NASA values (Atlantic ocean, 13 September 2000); rose line: Sea of Azov (15 October
1972); green line: Black Sea, Lake Ladoga (lines: pink, cyan, blue, deep pink); burly wood line:
Atlantic ocean (12 July 1974) (Varotsos et al. 2014)

to Lake Ladoga’s surface. The main information about the carried out experimental
campaigns is shown in Table 20.1.

The primary conclusion drawn from Fig. 20.1 is that, throughout the solar spec-
trum, water albedo decreases with wavelength. The water albedo decay curves
recorded over Ladoga between May 13 and May 18, 1984, exhibit a high degree
of similarity, as evidenced by the power-law equation A = 2541.1λ−1.76 with R2 =
0.97, which represents the average fit line. The water albedo has a notable peak in
the UV region at 335 nm.

As previously indicated, the power-law fit (illustrated in Fig. 20.1) accurately
captures the wavelength variation of water albedo from the UV spectrum to the
NIR region. Though the power-law fit is generally accurate for the whole spectral
profile of water albedo, a closer look at Fig. 20.1 shows that the spectral water
albedo in the UV region does not fit well with the power-law approximation. The
albedo profiles obtained from several spectrograms taken over the course of five
days are nearly constant over the long run, according to the data. According to this
Varotsos et al. (2014) finding, separate research should be done on simulating the
spectral dependence of water albedo in the UV and visible-NIR regions. Firstly, it
is important to note that the local maxima that are seen in the 330–340 nm range
could be explained by a rise in Rayleigh scattering (and consequently, reflectivity)
at shorter wavelengths.
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Table 20.1 Dates, times, solar elevations, and flight locations over snow, water, and sand

Dates of
flights over
sand

Lat.(°) Long.(°) Moscow
time (astr/
mic)

Greenwich
time

Elevation h Zenith
angle,θ

cosθ

9 Oct 1983 39 60 09:47 07:47 28°34′40” 61.5° 0.477

10 Oct 1983 39 60 09:47 07:47 28°19′24” 61.7° 0.474

11 Oct 1983 39 60 10:06 08:06 30°54′36” 59° 0.515

12 Oct 1983 39 60 09:05 07:05 21°00′19” 69° 0.358

13 Oct 1983 39 60 10:47 08:47 39°35’ 52°25’ 0.610

14 Oct 1983 39 60 10:12 08:12 41°52’ 50°18’ 0.639

16 Oct 1983 39 60 10:03 08:03 33°54’ 51° 0.629

19 Oct 1983 38:35 63:20 09:47 07:47 25°48′30” 64.2° 0.435

23 Oct 1983 38:35 63:20 10:05 08:05 38°18’ 53°42’ 0.592

24 Oct 1983 38:35 63:20 08:09 06:09 18°14′40” 71.75° 0.313

26 Oct 1983 38:35 63:20 09:14 07:14 39°17′33” 50.8° 0.632

Dates of
flights over
sand

Lat.(°) Long.(°) Moscow
time (astr/
mic)

Greenwich
time

Elevation h Zenith
angle,θ

cosθ

13 May
1984

60:35 31:31 12:55 10:55 48°26’ 51°34’ 0.622

14 May
1984

60:38 31:36 12:35 10:35 39°53’ 50.2° 0.640

15 May
1984

60:32 31:33 12:44 10:44 47°37’ 52°23’ 0.611

16 May
1984

60:33 31:35 12:46 10:46 47°22′25’ 42.7° 0.735

17 May
1984

60:39 31:32 12:56 10:56 48°31’ 51°29’ 0.623

18 May
1984

60:35 31:33 12:19 10:19 48°41’ 41.4° 0.750

Dates of
flights over
sand

Lat.(°) Long.(°) Moscow
time (astr/
mic)

Greenwich
time

Elevation h Zenith
angle,θ

cosθ

14 Apr 1985 61:30 31:30 10:44 08:44 32°11’ 57°49’ 0.542

28 Apr 1985 60:49 31:52 13:51 11:51 47°01’ 52°59’ 0.602

26 Mar
1985

61:53 31:52 12:57 10:57 31°33’ 59°27’ 0.508
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20.3 Water Albedo Versus Wavelength in the Visible-IR
Solar Spectrum

The study by Varotsos et al. (2014), on water albedo across different wavelengths
in the visible-IR region revealed interesting findings. It was observed that the water
albedo remains consistent across the NIR and visible spectra, following a power-law
mode. By excluding the UV region, the analysis in Fig. 20.2 (refer to Table 20.2 for
errors) highlights this relationship.

A comparison between Figs. 20.1 and 20.2 shows that while the power-law rela-
tionship varies across the whole wavelength region fromNIR to UV, it remains stable
when focusing solely on the visible to NIR regions (excluding UV). Moreover, the
information presented in Fig. 20.1 might be misleading concerning the variability in

Fig. 20.2 Water albedo (Lake Ladoga) has a spectral dependence in the visible and NIR (UV
excluded) bands, as inferred from six days of airborne observations (Varotsos et al. 2014, 2019)
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Table 20.2 Fig. 20.2 displays dates, fit equations, and the coefficient errors for water albedo. The
given a, and b values have a 95% confidence interval and are statistically significant (Varotsos et al.
2014)

Dates Power-law fit equation
(
y − axb

)
Error for a Error for b

13 May 1984 Y = 2783.9x−1.78 327.2 0.02

14 May 1984 Y = 278.38x−1.78 327.2 0.02

15 May 1984 Y = 2776.3x−1.78 326.7 0.02

16 May 1984 Y = 2777.7x−1.78 327.1 0.02

17 May 1984 Y = 2780.5x−1.78 327.6 0.02

18 May 1984 Y = 2748.9x−1.77 322.1 0.02

the UV of the spectrum of water albedo, where water albedo is independent over a
broad UV spectrum.

In summary, the albedo ofwater surfaces shows aweak dependence onwavelength
in the UV region. However, in the NIR and visible wavelengths, the albedo of water
follows a consistent power-law mode with wavelength. This finding is important
for climate and radiation studies utilizing ground-based, airborne, or satellite obser-
vations (Katsambas et al. 1997; Tzanis and Varotsos 2008; Varotsos 1995, 2005;
Varotsos et al. 2001).
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Chapter 21
Scaling Properties of Air Pollution

21.1 Long-Memory in Air Pollution in Megacities

Varotsos et al. (2005) performed a detrended fluctuation analysis (DFA) on the hourly
readings of O3, NOx, and particulate matter from five monitoring stations from 1987
to 2003 in the Athens air pollution dataset (Fig. 21.1).

With lag durations varying from oneweek to five years, persistent power-law rela-
tionships were seen in the swings of NOx concentrations and daytime and nighttime
O3 concentrations. During the day, stronger relationships were seen (Fig. 21.2).

Additionally, from roughly 4 h to 9 months, Athens’ PM10 anomalies showed
consistent power-law connections. Long-range correlationswere likewise discovered
for PM2.5 changes in a 6-month data set obtained from the “Supersite” of University
ofMaryland in East Baltimore, over lag durations varying from around 4 h to 2weeks
(Fig. 21.3).

To comprehend the fundamental causes of air pollution’s long-range behavior,
more research is required. These results most likely represent short- and long-term
sources and meteorological elements related to the atmosphere’s self-organized crit-
ical pattern. This study’s power-law connections may prove useful in creating more
precise simulation models for changes in particulate matter, O3, and NOx.

The following is a summary of the primary conclusions made by Varotsos et al.
(2005):

(1) At temporal periods ranging from one week to five years, strong power-law
correlations were discovered between daytime and nighttime O3 changes, with
stronger correlations occurring during the day. Similar patterns in the fluctuation
of NOx were noted.

(2) Over time periods spanning from 4 h to 9 months, persistent power-law correla-
tions in PM10 changes were identified, representing both short- and long-term
source/meteorological aspects. In Baltimore, similar persistence was observed
in PM2.5 during periods of 4 h to 15 days.
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Fig. 21.1 Daily average values of surfaceO3 (SOZ) dataset (1987–2003) for a daytime,b nighttime
at the Patision air-pollution site (center of Athens) (Varotsos et al. 2005)

The short- and long-term source/meteorological aspects associated with the atmo-
spheric self-organized critical pattern are probably the source of these long-range
correlations in the temporal evolution of air pollution. To comprehend the cause of
this long-term persistence in air pollution, more research is required. The results
may be utilized to evaluate current models for their scaling behavior in the temporal
evolution of air pollutants and to create new models for projecting future concentra-
tions of air pollutants under various scenarios. Moreover, Varotsos et al. (2012a, b)
found that the persistence of surface ozone concentration (SOC) in the early 1900s
and early 2000s shared similar features.

This suggests that the SOC fractal behaviorwas unaffected by the industrialization
and development of in situ photochemistry in the Athens basin.

Furthermore, there were only slight differences in the SOC variations between
day and night. The accuracy of simulation models for variations in air pollution near
surface and the predictability of their time scale variations could be improved by
these findings.

21.2 Long-Memory in Aerosols Content

Varotsos et al. (2006) examined self-similarity traits by applying DFA to zonal
average daily Aerosol Index (AI) values obtained from satellite data covering the
period from 1979 to 2003. The results showed that on time scales longer than 4 days
but less than 2 years, detrended and deseasonalized AI discrepancies show persistent
long-range correlations of power-law mode in northern/southern hemispheres and
globally. This suggests that oscillations in AI within shorter time frames are power-
law correlated with fluctuations in AI within longer time frames (about 4 days to
2 years). The quasi-biennial oscillation (QBO) likely originates on a time scale of
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Fig. 21.2 (Up) The deseasonalized daily average values of a daytime surface O3 (SOZ) and
(b) nighttime SOZ at the Patision air-pollution site between 1987 and 2003 (Δt in days) are
shown using the DFA-function in a log–log plot. The deseasonalized daily average values of NOx
throughout the day at Patision air-pollution site from 1988 to 2003 (Δt in days) and the hourly
average PM10 values at Zografou air-pollution site from 2000 to 2003 (Δt in hours) are plotted in
a log–log plot with the DFA-function (Down) (Varotsos et al. 2005)

around two years, while the weather systems of the synoptic-scale likely give rise to
a time scale of approximately four days.

In essence, AI anomalies show a power-law evolution as they go from one-time
domain to the next. Discussion is held regarding the effects of 12-month and 6-
month cycles on the scaling behavior of AI time series in both hemispheres. The
2-year temporal scale in AI time series could possibly be explained by the QBO
modulating the Brewer-Dobson cell in the zonal wind of the equatorial stratosphere.
The 4-day temporal scale is also probably influenced by synoptic-scale weather
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Fig. 21.3 The
deseasonalized hourly mean
PM2.5 data at the
“Supersite” Station at
Baltimore from July 4, 2002,
to December 26, 2002, are
plotted in a log–log format
using the DFA-function
(Varotsos et al. 2005)

processes. These findings may be useful for verifying current models to see if they
display the above-described scaling tendency.

The time series data does not offer any clear proof during times of volcanic
eruptions. In particular, there was no O3 shortage in the southern hemisphere as a
result of El Chichon’s 1982 eruption or Pinatubo’s 1991 eruption. The dominant
winds in the lower stratosphere during the post-El Chichon era can account for this.
The volcanic effect is responsible for the reported ozone shortage, which varies
from 2 to 4% at equatorial latitudes to up to about 5% at middle and high latitudes.
These inadequacies, which include the noise term, last for several months following
the eruption and are more significant than the predicted inaccuracy brought on by
radiance tainted by aerosols.

The aforementioned results are of interest for various applications in air pollution
research (Christodoulakis et al., 2017, 2022; Tzanis et al. 2011; Varotsos 2004;
Varotsos et al. 1992, 2001, 2012a, b, 2014a, b, 2015, 2021).
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Chapter 22
Scaling Effect in Greenhouse Gasses

22.1 Long-Memory in the Atmospheric Carbon Dioxide
Content

In order to identify potential scaling behavior in the temporal history of the monthly
mean values of the atmospheric carbon dioxide (CO2) concentration at Mauna Loa
Observatory in Hawaii, USA, Varotsos et al. (2007) employed the detrended fluctu-
ation analysis (DFA). This dataset is the longest continuous record that is currently
available worldwide, running from 1958 to 2004.

According to their research, there is a long memory because the variations in
CO2 concentrations show long-range relationships in a power-law fashion. The lag
durations of these associations range from 4 months to 11 years. The study also
showed that noise is produced by random variations in CO2 concentrations. This
noise has an exponent that is close to one and a power-law frequency spectrum.
This implies that there is a notable increase in the correlation times. In addition, a
properly rescaled subset of the original CO2 concentration time series closelymimics
the original dataset, the researchers found. In the end, the power-law connection
generated from actual CO2 concentration data may strengthen the trust in global
climate models and the transport of atmospheric chemical species.

More specifically, Varotsos et al. (2007) assumed that Wiener filtering is the most
effective way to deseasonalize the CO2 dataset and that the 10th order polynomial
trend is used to detrend it. As a result, the α-values of DFA-l have an average of 1.08
and a standard deviation of 0.03 (Fig. 22.1). The DFA-l α-values have an average of
1.20 and a standard deviation of 0.03 after the detrending is completed as previously
and the deseasonalization is treated using the discrepancies from the regular data
(Fig. 22.2). It is important to emphasize that there is close agreement between the
α-values acquired in the two situations stated above.
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Fig. 22.1 A log–log graph of theDFA-l against the periodΔt (measured inmonths) for CO2 content
values that were detrended (using the 10th order polynomial tool) and deseasonalized (using the
Wiener filter tool) between 1959 and 2004. DFA-1, DFA-2, DFA 3, DFA-4, and DFA-5 have α-
values of 1.10 (±0.02), 1.13 (±0.02), 1.09 (±0.02), 1.06 (±0.02), and 1.06 (±0.03) (Varotsos et al.
2007)

Fig. 22.2 The connection between DFA-l and the time regionΔt (measured in months) for the CO2
data that has been detrended and deseasonalized is shown in a log–log graph. The monthly average
values’ departures from their regular values were used to analyze the CO2 data. The analysis is done
for the years 1959 through 2004. For DFA-1, DFA-2, DFA-3, DFA-4, and DFA-5, the calculated α
values are 1.12 (±0.02), 1.20 (±0.02), 1.21 (±0.02), and 1.21 (±0.03), (Varotsos et al. 2007)
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It is also worth mentioning that filtering out the seasonal variability by the regular
“deviations from the normal” technique results inα-values varying in the region 0.91–
1.03. This confirms the α-values that were obtained in cases when the detrending
and deseasonalization techniques were marginally distinct.

The primary conclusion drawn from Varotsos et al. (2007)’s numerous analyses
is that, irrespective of the deseasonalization and detrending techniques employed,
the DFA α-value is between 0.91 and 1.21. This suggests that, like a 1/f-type pattern,
the variations in CO2 content show persistent long-range behaviour. The significant
persistence seen indicates that there is a power-law positive correlation between the
variations in CO2 content over both short and extended time periods (up to eleven
years). Put more simply, a power-law pattern tends to indicate that a rise in CO2

content is accompanied by another rise at another time. This conclusion suggests
that the correlations between the CO2 content variations exhibit slower declining
correlations rather than the typical stochastic pattern of Markov-type, which is an
exponential drop with time.

One interesting point to note is that the persistence observed can potentially serve
as a forecast for CO2 concentration. It assumes that the CO2 content in the “next time
segment” (up to eleven years) will be comparable with the corresponding “present
time segment”.However, it is important to recognize that this differs from the classical
climatological prediction, according to which the CO2 content in the “next” eleven
years will be comparable with the climatological mean content.

Additionally, an effort has beenmade to compare the results ofDFAanalysis on the
Mauna Loa CO2 data with the CO2 observations from the Antarctic region (89z59′ S,
24z48′ W) from 1973 to 2004. The South Pole data shows less seasonal dependence
compared to Mauna Loa. By applying DFA-1 to the detrended and deseasonalized
CO2 dataset at the southern polar regions, it was found that the exponent is 1.22,
indicating the persistent long-range correlations, such as observed over Mauna Loa.

Additionally, we looked into whether the CO2 content dataset’s intense persistent
behaviourwas caused by the content’s actual levels or by how they changed over time.
We accomplished this by shuffling the detrended and deseasonalized CO2 content at
random. If the shuffled CO2 content exhibits random (white) noise, the previously
observed persistence is due to the time evolution of the data rather than the data itself.
The exponent α= 0.49 ± 0.02 was obtained by applying DFA-1 to the shuffled CO2

data, showing that the shuffled data is essentially uncorrelated.
Therefore, the power-law behaviour obtained from the actual observations of CO2

content is ultimately a result of their temporal course and correlations. The scalability
performance of climate prediction models under various CO2 scenarios can also be
evaluated using these correlations.

In conclusion, theCO2 fluctuations show strong long-range persistence, indicating
positive correlations in a power-law manner across different time intervals. These
correlations are attributed to the time evolution rather than the actual CO2 values.
The analysis of these correlations can aid in identifying human-induced changes
due to increased CO2 emissions against the backdrop of natural variations in the
atmosphere. The scaling behaviour observed in real CO2 data could be utilized to
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assess the effectiveness of climate modeling and enhance atmospheric chemistry-
transport models on a global basis.

22.2 The Necessity to Establish the Power-Law: The Two
Criteria

The autocorrelation function and the constancy of the individual gradients of fluc-
tuation functions must be examined to determine whether long-range correlations
exist in a dataset. It is required since a power-law behavior is not implied by the DFA
single straight line for a dataset under study. The following subsections go over three
examples.

22.2.1 Do the Thermospheric CO2 and nO Power Exhibit
Power-Law Behavior?

An investigation into the energy released globally by nitrogen monoxide and CO2

from the thermosphere was carried out by Varotsos and Efstathiou (2018). They
examined the development of this energy using data obtained through observation
and empirical analysis. They started by looking at the daily power observations
of nitrogen monoxide and CO2 that were gathered from the NASA TIMED satel-
lite’s SABER sensor between 2002 and 2016. They then examined the recently
obtained empirical daily power released by nitrogen monoxide and CO2 from the
thermosphere’s IR energy budget, which covered the years 1947 to 2016.

The power emitted by nitrogen monoxide and CO2 from the thermosphere was
examined for power-law behavior using the DFA. The results of the empirical and
observational measurements did not corroborate the existence of power-law pattern.
This implies that the intrinsic qualities of the empirically acquired data and the
observational data are comparable, which strengthens their dependability.

Figure 22.3a illustrates the evolution of nitrogen monoxide and CO2 daily power
over time from 2002 to 2016. Meanwhile, Fig. 22.3b shows the matching root-mean-
square fluctuation functions Fd(τ) of the DFA technique versus time scale τ (in
days).

The classicalWienermethod (Maraun et al. 2004) and polynomial regression anal-
ysis are used to remove the strong polynomial trend and seasonality in the dataset
of nitrogen monoxide and CO2 daily power. Additionally, the autocorrelation func-
tion and the technique of the individual gradients of fluctuation functions are used
to confirm the existence of long-range correlations. To ensure accuracy, the indi-
vidual gradients of logFd (τ) against logτ are examined for steadiness within an
adequate extent. Similarly, the profile of the power spectral density is analyzed to
determine if it fits better algebraically (power-law) or exponentially. The derived
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Fig. 22.3 a The daily power of nitrogen monoxide and carbon dioxide from 2002 to 2016. b The
DFA root-mean-square fluctuation functionsFd (τ) are shown in a log–log plotwith best-fit equations
for both CO2 and NO. Varotsos and Efstathiou (2018)

DFA scaling exponent suggests long-range persistence in the initial datasets of CO2

(NO nitrogen monoxide) daily power α= 1.04 ± 0.01 (α= 0.84 ± 0.02). However,
further investigation is needed to validate long-range correlations and scaling of
power-law type.

The power spectral density profiles for the detrended and deseasonalized datasets
of daily power ofCO2 andNO, from2002 to 2016, are specifically shown inFig. 22.4a
and b. This indicates that the exponential decay could only be ruled out in the case
of CO2, where a fit of the power-law type appears to provide statistical reliability.
However, Fig. 22.4a and b and 22.5(a and b) clearly show that the requirements of
Maraun et al. (2004) are not met, indicating that the detrended and deseasonalized
datasets of the daily power of CO2 and NO cannot be validated using power-law
scaling. Remarkably, there appears to be a stability of the individual gradients against
logτ in a narrow range only for the case of nitrogen monoxide; this, however, is
insufficient to validate the long-range correlations (Fig. 22.5).

Outlining the previously mentioned work, Varotsos and Efstathiou (2018) inves-
tigated the changes in the daily power of CO2 and NO during 2002–2016. Power-law
scaling and long-range correlations were not found for CO2 and NO daily power,
even if theDFA scaling exponent for the original datasets of both quantities displayed
persistent behavior.

Analyzing the scaling pattern of detrended and deseasonalized datasets of carbon
dioxide and nitrogen monoxide daily power over the same time revealed similar
results. Using data from the thermosphere’s infrared energy budget, Varotsos and
Efstathiou (2018) also examined the historical evolution of radiated CO2 and NO
daily power during 1947- 2016. For CO2 and NO daily power, power-law mode
and long-range correlations were not apparent, despite the scaling DFA exponent
exhibiting stable behavior for the initial datasets of both gases.

Analyzing the scaling dynamics of detrended and deseasonalized datasets of
carbon dioxide and nitrogen monoxide daily power during 1947–2016 produced
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Fig. 22.4 Power spectral density for the detrended and deseasonalized of daily power datasets
(during 2002–2016) for a carbon dioxide and b nitrogen monoxide with the respective power-law
(dashed line) and the exponential (solid line) fit (carbon dioxide: y = 1.95·10–6 x−1.06 with R2 =
0.36 and y = 7.31·10–5 e−7.31x with R2 = 0.37, nitrogen monoxide: y = 5.5·10−6 x −0.85 with
R2 = 0.28, y = 1.1·10−4 e −6.31x with R2 = 0.33) (Efstathiou and Varotsos 2018)

Fig. 22.5 Local slopes of the detrended and deseasonalized datasets of daily power of a carbon
dioxide and b nitrogen monoxide were determined within a segment of 18 points (dashed grey line),
12 points (solid thin black line), and 15 points (dashed black line). The logFd (τ) against logτ were
plotted. The relevant 1.96·sa–segments of the gradients across all scales under consideration are
indicated by the error bars

results that were comparable. The most important finding from the DFA results
discussed above is that the IR power datasets observed by the SABER instrument
during 15 years and its extension back to 1947 have consistent intrinsic features. This
implies that the observations and the extended datasets are in agreement. To fully
comprehend the impact of sustained variations in rising carbon dioxide and nitrogen
monoxide contents on IR power, more research is necessary.
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22.2.2 Does the Tropical Ozone Exhibit Power-Law
Behavior?

Based on model simulations at heights of 30–50 km, Varotsos et al. (2017) examined
the tropical monthly average O3 volume mixing ratios (VMR) during the period
1980–2014. Whether the vertical O3 VMR shows long-range power-law persistence
was the main focus of the inquiry. The acquired results demonstrated that there is no
long-range power-law connection in the modeled O3 data, indicating that the data
are not influenced by a persistent signal. The information is displayed below.

Checking for the satisfaction of the following two criteria is crucial in order to
establish the previously mentioned persistence at long time scales: (1) whether the
scaling exponent’s individual gradients are steady over a particular segment, and (2)
whether the autocorrelation function’s exponential decay is rejected (Maraun et al.
2004). In reference to the initial criterion, Fig. 22.6b displays the individual gradients
as a function of logτ for two distinct segment widths, namely 12 and 13 points.
The results indicate that the individual gradients diminish without attaining a stable
period.With respect to the second requirement, the spectral density function of theO3

VMRs’ detrended and deseasonalised datasets, fitted by power-law and exponential
curves, is shown in Fig. 22.2c. These fits’ statistical metrics (such as the R2 value)
demonstrate that the exponential approach outperforms the algebraic (power-law) fit.
As a result, the previously indicated requirements for the long-range correlations’
validation are not met. Using models B_SAT and C_SOR, we also applied the DFA
approach to the detrended and deseasonalized datasets of O3 VMRs, at 35 km, over
the years 1980–2014. The findings were comparable to those previously obtained.
Therefore, the calculations employing all three models indicate that the O3 VMRs at
35 km do not appear to be characterized by long-range correlations of the power-law
fashion, that is, with a > 0.5.

22.2.3 Does the Solar and Volcanic Forcing Exhibit Power
Law? DFA and Haar Tools

There is a serious flaw in the conclusions drawn by a number of climatic studies
on long-range reliance on the memory of climate conditions. These investigations
contradict the straightforward exponential decay of the autocorrelation function and
are unable to demonstrate power-law scaling. Below is an example that illustrates this
problem: from insufficient data analysis, a strong long-range reliance wasmistakenly
inferred.

Varotsos and Efstathiou (2017) used the DFA approach on the solar and volcanic
forcing (SF, VF) datasets for the past 103 years in the tropical Pacific to show this.
A straight-line approach with a gradient greater than 0.5 was demonstrated by the
results in a log–log representation. This, however, should not be interpreted as proof
of enduring long-range relationships.
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Fig. 22.6 a The root-mean-square fluctuation function Fd (τ) is plotted in a log–log fashion against
the time scale τ (in years) for the dataset of the monthly average O3 VMRs at 35 km that were
detrended and deseasonalized between 1980 and 2014. The best-fit equations for each series are y
= 0.72x − 1.53, R2 = 0.98. b For the same dataset, the individual gradients of the Fd (τ) against
logτ estimated inside a segment of 13 points (dashed grey line) and 12 points (solid thin black line).
The matching 1.96·sa—segments of the gradients over all scales under consideration are indicated
by the grey and black error bars. The power spectral density of the monthly average O3 VMRs that
were detrended and deseasonalized was obtained using the power-law (black line) and exponential
(grey line) fits, with y = 8.0·102·x−0.92 with R2 = 0.53 and y = 1.7·104·e−6.1× with R2 = 0.64,
respectively (Varotsos et al. 2017)

According to Varotsos and Efstathiou (2017), this straight-line fit alone cannot be
used to determine the presence of long-range dependence. It necessitates validating
power-law scaling and rejecting exponential decay in the autocorrelation function.
Their analysis showed that the existence of long-term correlations in the SF and VF
over the past millennium cannot be explained by a DFA exponent of more than 0.5.

Stated differently, empirical investigations predicated on these two requirements
ought to be seen as corroborating evidence for the plausibility of the scaling hypoth-
esis rather than as an absolute demonstration of scaling. Varotsos and Efstathiou
(2017) also explore the scaling behavior of SF and VF data using the Haar tool,
which has proven its reliability in detecting the scaling property in climate datasets.
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Table 22.1 The DFA-l a
values for the VF from 1000
to 1999 (Varotsos and
Efstathiou (2017)

No detrending 6th order polynomial detrending

DFA-1 a = 0.73 ± 0.02 a = 0.73 ± 0.03

with R2 = 0.96 with R2 = 0.96

DFA-2 a = 0.64 ± 0.03 a = 0.62 ± 0.03

with R2 = 0.93 with R2 = 0.93

DFA-3 a = 0.55 ± 0.02 a = 0.56 ± 0.02

with R2 = 0.94 with R2 = 0.94

Table 22.2 The DFA-l a
values of for the SF from
1000 to 1999 (Varotsos and
Efstathiou (2017)

No detrending 6th order polynomial detrending

DFA-1 a = 0.9 ± 0.04 a = 0.76 ± 0.03

with R2 = 0.92 with R2 = 0.93

DFA-2 a = 0.76 ± 0.05 a = 0.64 ± 0.04

with R2 = 0.86 with R2 = 0.88

DFA-3 a = 0.58 ± 0.04 a = 0.55 ± 0.03

with R2 = 0.86 with R2 = 0.89

Without deleting their periodicities, Tables 22.1 and 22.2 present theDFA-l values
that were obtained for the original and detrendedVF (SF) datasets from 1000 to 1999.

The results show that a straight line fits well in a log–log representation of the
fluctuation function, with a gradient larger than 0.5.

Nevertheless, it is clear from looking at the standards put forth by Maraun et al.
(2004) that for every examined dataset, neither the stability of individual gradients nor
the rejection of ACF exponential decay is satisfied (absence of long-term memory).

Importantly, the Zebiak-Cane model dataset, which is based on the Haar method,
was also used to validate all the inherent aspects of the VF and SF datasets that were
previously discussed (Lovejoy and Schertzer 2013). To elaborate, it is found that,
when the RMS cubic DFA is increased by the proper factor, the RMS Haar and the
RMS cubic DFA are almost equal to the Haar fluctuations.

Long-range scaling typically denotes the presence of significant long-range statis-
tical relationships. There is, however, an exception in the case ofGaussianwhite noise
T (t), where a= 0.5,K(q)= 0, andH = -0.5. However, the discovery of a≈ 0.5 in an
empirical study simply suggests that 1 + 2H ≈ K(2), demonstrating the existence of
long-range interdependence. In order to confirm their absence, one must show that a
≈ 0.5, but it is also rare to show that K(q)= 0, especially in the geophysical domain.

Different interpretations of the DFA exponent a rely on the quasi-Gaussian
approximation. For example, the terms “persistence” and “antipersistence” can be
interpreted as variations on “wandering” or “cancelling” behaviors, although they
are more concerned with Gaussian white noises than with the average discrepancies
that the sign ofH indicates. When the variance of a process is growing more quickly
than that of Gaussian white noise (a > 0.5), it is said to be “persistent” (Gaussian),
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whereas the variance of a “antipersistent” process increases more slowly (a < 0.5).
For strongly non-Gaussian processes, this classification might not be particularly
helpful, but the sign of H is still quite important.

The capacity of the DFA approach to remove nonstationarities is a topic of signif-
icant discussion. The original series’ l − 1 order polynomials are eliminated by alth
order DFA analysis, which is defined using l th order polynomial regressions. This
has resemblance to polynomial extensions of fluctuations based on the Haar wavelet
as presented in Lovejoy and Schertzer (2012), or to wavelets such as the “Mexican
hat” and their higher-order derivatives. It is incorrect to state that it alone elimi-
nates nonstationarities because it eliminates trends of all sizes, not just the largest
ones. Multifractal processes, for instance, are generally specified on finite regions
with finite outer scales, where they can maintain statistical homogeneity/stationarity
regardless of their spectral slope orH value. Strong gradientsmay be seen throughout
the region in each realization, and linear trends may be seen in each subregion, but
these are all random features of a statistically stationary/homogeneous process. In
polynomial regression, the DFA depends on a strong stationarity requirement for the
residuals. It is recommended to treat trends as a “pretreatment” by deleting them
over the entire series instead than at intervals, in order to eliminate nonstationarities.
Although measures are employed to reduce geophysical nonstationarities such as
diurnal and yearly cycles, oscillations are still present.

Anticipate notable oscillations and features outside of quasi-Gaussian processes if
the process is multifractal. Treating them as nonstationarities or inhomogeneities can
result from misinterpretations. Without making any presumptions, it is impossible
to derive statistical stationarity or homogeneity from actual data. These are theoret-
ical characteristics of stochastic processes. Common pretreatments for eliminating
nonstationarities include DFA, which estimates long-range correlations impacted by
gaps, trends, spikes, and harmonics (Chen et al. 2002). The following succinctly
describes the primary conclusions of Varotsos and Efstathiou’s (2017) analysis:

1. No obvious long-range correlations were found, despite the fluctuation function
of solar data seeming linear in a log–log form. Themain reason for this is that, for
bigger scales, the local slopes do not converge to a constant value within a wide
enough range. As a result, it’s critical to use power-law scaling and the analysis
of autocorrelation function decay in addition to the DFA method for examining
extended memory. Empirical analyses, like the one by Maraun et al. (2004),
should be interpreted cautiously nevertheless, as they might not offer concrete
evidence of scaling but rather imply the plausibility of the scaling hypothesis.

2. The scaling properties of the Zebiak-Canemodel dataset were found to be almost
same when the RMS cubic DFA method and the RMS Haar-tool were applied. It
is important to remember that the latter method’s fluctuations must be corrected
by a suitable factor.

The earlier works in this field (Kondratyev and Varotsos 1995, 1997; Cracknell
et al. 2009; Krapivin and Varotsos 2008; Varotsos 2013; Varotsos et al. 2014, 2019,
2020, 2023; Varotsos and Ghosh 2017; Varotsos and Efstathiou 2019) contain addi-
tional information about the atmospheric greenhouse effect and its components. The
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phenomenon’s previously noted nonlinearity is a development that can be applied to
a fresh understanding of the underlying mechanics.
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Chapter 23
A New Tool to Study Complex Systems:
The Natural Time

23.1 Introduction

The largest problem facing science is time, not space.The representationof traditional
time in real numbers is a 1D continuum, but this continuity is not predicated on any
core idea. On the other hand, a new time field known as “natural time” (NT) was
introduced more than 20 years ago. It is not continuous and its values fall into
countable sets. Datasets can reveal hidden dynamic features by analyzing complex
systems in NT (e.g. Abe et al. 2005).

This method aids in lowering uncertainty and extracting useful signal data.
Reversing NT fluctuations allows one to measure long-range dependence in datasets.
We can also study the dynamic evolution of complex systems and pinpoint critical
states with the help of “natural time analysis” (NTA).

When the normalized power spectrum Π(ω) is brought in NT, the expression
Π(ω)≈1 − κ1ω2 results from its Taylor expansion at low frequencies, ω (ω → 0).
When determining the approach to a critical point, the coefficient κ1,which represents
the variance ofNT κ1 =<χ2>−<χ>2 is helpful.Moreover,NTAaids in differentiating
between the two origins of self-similarity: infinite variance in the process’s incre-
ments or long-range temporal correlations. Nonetheless, self-similarity can generally
originate from both of these sources, and NTA can also detect such instances.

The following sections will discuss several ways that NTA has been applied to
the study of a few geophysical complex systems.
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23.2 Ozone Hole as a Complex System Using the Natural
Time Analysis

Varotsos and Tzanis (2012) conducted an analysis of the dataset for the maximum
daily O3 hole area (OHA) over Antarctica during 1979–2009. In order to capture the
dynamics of the O3 hole complex system, this analysis concentrated on the novel
time field known as the NT and using the entropy S. The results show that the S
under time reversal (S_) for all scales (3–15 years) and in NT for those ranging from
3 to 7 years have stabilized recently. Varotsos (2002, 2003, 2004) first noted the
notable event of the major, sudden stratospheric warming and the subsequent split
of the Antarctic O3 hole into two mini-holes in September 2002. However, distinct
characteristics of this entropy were observed prior to this event. In particular, the
antecedent modifications listed below have been found: First, after about 1999, the S
in NT gradually increased for scales larger than 8 years. Second, during 2000–2001,
all scales (3–15 years) exhibit an increase in S under time reversal (S_), with the
exception of the 13-year scale. Finally, for shorter scales of 3–7 years, the values of
the entropy change (ΔS) in NT nearly coincide at 2000 and then decline. The eddy
heat flux, which is connected to the vertically propagating wave activity that impacts
the O3 hole over Antarctica, is also analyzed in the NT field. The outcomes validated
the inferences drawn from the diagnostics of the OHA.

23.2.1 The Natural Time Analysis

Varotsos andTzanis (2012) used theNTA to analyze the dataset of themaximumdaily
ozone hole area (MD-OHA) over Antarctica for each year during 1979–2009. The
OHA, which is defined as the area south of 40°S with O3 values below 220 Dobson
Units (DU), is derived from measurements made by all O3 measuring satellites.

Additionally, Varotsos and Tzanis (2012) used the same analysis to examine the
eddy heat flux (EHF) annual average values in the belt 45°–75°S on average during
1979–2010 at 10 and 100 hPa.

As a quick review of the NTA process, let’s look at a random sample of the MD-
OHA events that is shown in Fig. 23.1a. It is noteworthy that this time series may also
be representative of other geophysical events, like volcanic eruptions or earthquakes.
The steps involved in the NTA process are as follows (Varotsos 2005):

(1) First Step

Converting the initial dataset into a new one without taking the event occurrences’
chronological order into account.

When N events make up a time series known as MD-OHA, the k-th event’s
occurrence is indicated by the NT, χk . It has the following definition:



23.2 Ozone Hole as a Complex System Using the Natural Time Analysis 225

Fig. 23.1 A stochastic
segment of the MD-OHA
event time series a in
conventional time and b in
natural time χk (evolution of
the pair (χk , Qk)). The k-th
event’s intensity is quantified
by Qk (Varotsos and Tzanis
2012)

χk ≡ Order of occurrence of an event(k)

Total number of the events(N )

By definition, χk progresses with each subsequent k-th event with intensity Qk ,
and it ranges from zero to unity.

Figure 23.1b displays a new dataset that represents the development of the pair
(χk, Qk), or in simpler terms, the original dataset transformed into the NT field.

(1) Step 2

Calculating the S:

Alternatively, alongside Qk , the quantity pk can be considered and assessed as:

pk = Qk/

N∑

n=1

Qn

Here, pk represents a normalized intensity of the k-th event, describing the “probabil-
ity” of observing it. Therefore, the progression of the pair (χk, Qk) in the above-said
NT can be equally substituted by the progression of (χk, pk).

Then the mean value of χ, which is denoted by <χ>, can be calculated as:

〈χ〉 =
N∑

k=1

pkχk;

likewise, the mean value of the quantity f (χ), is denoted by <f (χ)> , and can be
determined by:
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〈f (χ)〉 =
N∑

k=1

pk f (χk),

and therefore

〈χ ln χ〉 =
N∑

k=1

pkχk ln χk .

As a result, the entropy which by definition is: S ≡ <χlnχ> − <χ> ln <χ> ,
transforms in the NT field as shown below:

S ≡
N∑

k=1

pkχk ln χk −
(

N∑

k=1

pkχk

)
ln

(
N∑

m=1

pmχm

)
(23.2)

Every time a subsequent event happens, the NT value χk advances as previously
stated, and pk likewise changes according to Eq. (23.1); as a result, all the values on
the right side of Eq. (23.2), and thus S, change.

Going on, we will take the following tack: A length-i segment moves across the
whole MD-OHA dataset over Antarctica during 1979–2009, one event (year) at a
time.

Every time, the entropy S is calculated (Fig. 23.2).
Now let’s dissect how we calculate S for a sequence of successive MD-OHA

events. To be clear, if we take a segment of three events (years), then the following
3-year sequences (1998, 1999, 2000), (1999, 2000, 2001), (2000, 2001, 2002) corre-
sponding to S3 (2000), S3 (2001), and S3 (2002), respectively, will have their MD-
OHA value of 2000 taken into account when calculating S. S3 evolution year by year
will be examined in detail as the S value for each of these sequences will essentially
be found by analyzing them chronologically.

(2) Step 3

Calculating the entropy S_ while considering the time reversal:
In the next step, we will repeat the computation from step 2 using the S that we

obtained by taking the time reversal into account, which is represented by the symbol
S_ (Fig. 23.3). The last event is now interpreted as the first one, the second-to-last
event as the second, and so on, according to the definition of the operator T′, which
is Tpk′ = pN–k+1.

Wewish to emphasize that the entropy S employed in the aforementioned analysis
is a dynamic entropy that takes the order of events into account, rather than merely a
statistical one. Additionally, S_ generally deviates from S, pointing to the disruption
of time-reversal symmetry and emphasizing the significance of taking the true time
arrow into account when dividing similar signals with distinct dynamics. S and S_
are both less than the value Su of a “uniform” distribution for critical dynamics.
We will examine the findings of the NTA of the MD-OHA and EHF datasets in the
following sections (Varotsos and Tzanis 2012).
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Fig. 23.2 The entropy Si in NT is shown for different segment lengths i ranging in 3–15 years (on
the left scale). The data, measured in Million km2, is represented by black pentagons. For segment
lengths in 3–7 years, the entropy S stabilizes in recent years (indicated by the blue arrow). However,
for segment lengths greater than eight years, there has been a slow rise in entropy since 1999 (as
shown by the red arrow). At longer scales, during 2000–2001, the entropy is approximately 0.080
(as indicated by the green arrow), which is similar to this obtained by a fBm with a DFA exponent
1. For critical dynamics, the entropy is less than Su (equal to ln2/2–1/4, approximately 0.0966),
indicating a “uniform” distribution with long-range correlations. (Varotsos and Tzanis 2012)

23.2.2 The Natural Time Analysis in the Study of the Ozone
Hole Dynamics

First, we will look at the results for entropy in natural time Si over various segment
lengths ranging in 3–15 years, moving annually through the complete MD-OHA
dataset during 1979–2009 (Fig. 23.2). As we can see, the value of S stabilizes in
the last few years for i = 3–7 years, but after 1999, there is a gradual increase for i
> 8. Notably, all Si values are less than the standard deviation (Su) of a “uniform”
distribution. This is consistent with the long-range correlations that were covered in
the previous section. Furthermore, the Si values during 2000–2001 are near or vary
near the value S ≈ 0.080 on longer scales.

The S value obtained from a fractional Brownian motion (fBm) with a DFA near
unity is comparable to this (see Fig. 23.4 of Varotsos et al. 2006).

Next, we will examine the entropy results in NT under time reversal (S_)i for
different segment lengths ranging in 3–15 years, with annual shifts over the whole
period (1979–2009). These results are shown in Fig. 23.3, where we can observe that
the value of (S_)i almost completely stabilizes in recent years for all scales i = 3–15
years (with the exception of a transient period observed in 2002–2007). On the other
hand, prior to 2002, a significant precursor shift is visible: from 2000 to 2001, S_
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Fig. 23.3 Over the entire MD-OHA time series from 1979 to 2009, the entropy in NT under time
reversal (S_)i for different segment lengths i = 3–15 years (left scale) is shown sliding by one year
each time. The black pentagons represent the data (in million km2; right scale); With the exception
of a brief period 2002–2007, the (S_)i nearly stabilizes for 3 ≤ i ≤ 15 years during the last few
years (see the blue arrow). The values of (S_)Icontinue to be less than those of (Su) in a “uniform”
distribution. Remember that both S and S_ should be less than Su for critical dynamics (The reader
is directed to the online version of this article for an interpretation of the color references in this
figure legend.) (Tzanis and Varotos 2012)

values rise on all scales, with the exception of i = 13. From 2001 to 2002, all (S_
)i values fall, with the exception of i = 13, and these (S_)i values continuously stay
below that (Su) of a “uniform” distribution. Recall that S and S_values for critical
dynamics should both be less than Su, as was previously discussed.

Now, we are concentrating on the outcomes of the entropy change ΔSi = Si −
(S_)I under time reversal for various segment lengths i (3–15 years), sliding through
the whole time series (1979–2009) by one year each time. These findings are shown
in Fig. 23.4. A close inspection of the figure reveals that, prior to 2002, a scale
invariance existed, albeit on very small scales. In particular, we observe that the ΔSi
values nearly coincide at 2000 and then decline for scales i 3–7 years. On the other
hand, the ΔSi values rise for longer scales (i.e., i – 10) between 1990 and 2005.

Given that precursory changes can be detected on both shorter and longer scales
in this complex system, the 11-year solar cycle seems to be important. For example,
we discovered that for scales I 3–7 years, theΔSi values coincide in 2000. In contrast,
the Si values exhibit a slow increase after 1999 for scales longer than eight years.
Consequently, given the complexity of the system under study, it is crucial to examine
Si, (S_)i, and ΔSi at scales close to the 11-year cycle in order to pinpoint precursory
effects. It is important to note that the 2000 signal may have been related to the
OHA phase transition that occurred in 2001 (the largest OHA) and 2002 (the smaller
OHA).
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Fig. 23.4 The evolution of S under time reversal in NT. The ΔSi = Si − (S_)I is the representation
of the S change. The segment lengths (i) span a period of 3 − 15 years. The data in million km2

is represented by the right scale, while the values of ΔSi are represented by the left scale. Black
pentagons represent the data points, and linear interpolation was applied for the year 1995. It is
important to remember that scale invariance existed prior to 2002, but only on small scales. In
particular, the values of ΔSi are nearly the same in 2000 and then decrease (shown by the brown
oval) for the scales i = 3–7 years. On the other hand, ΔSi rises for longer scales in 1990–2005
(shown by the green arrow) (Varotos and Tzanis 2012)

Lastly, we will talk about the year 1988, when it appeared as though the Antarctic
O3 hole would experience a similar abrupt shift to what was seen in 2002. Nonethe-
less, a somewhat powerful event occurred in 1988, though it was not a significant one
(without a reversal of the zonal average zonal wind at 600). This explains why the
1988 small Antarctic O3 hole did not rupture. Furthermore, there were differences
between the 5–7 year period characteristic features of El Niño in 1988 and 2002.
Sadly, no precursory changes, if any, could be found because of the scant observa-
tions of the OHA prior to 1988 (only 9 years of data are available). We will now
proceed to the next subsection, where we will examine the temporal evolution of a
proxy parameter for the dynamics of the O3 hole, in an effort to further corroborate
these findings.

The eddy heat flux, which is directly related to the vertically propagating wave
activity that affects the O3 hole over Antarctica, was also examined in the NT field.
The results of the eddy heat fluxNTA at 10 and 100 hPa, averaged in the belt 45-750S,
support the conclusions drawn from the analysis of the OHA (Varotsos and Tzanis,
2012).

In conclusion, three initial changes have been found through the examination of
the maximum daily OHA dataset. The following are the modifications:

(1) After about 1999, there is a slow rise in S in NT for scales larger than 8 years.
(2) Between 2000 and 2001, theS in NT under time reversal rose for all scales (3–15

years), with the exception of the nearly 13-year scale.
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(3) For short time scales of 3–7 years, the ΔS values in NT nearly coincide at 2000
and then decline.

These three facts together point to the system’s approach to a dynamic phase
transition, or critical point, almost two years before the O3 hole split over Antarctica
(Varotsos 2002, 2005).

We used the same analysis to look into the dynamical evolution of the eddy heat
flux in the NT field because we were confident in the relationship between the eddy
heat flux and theO3 hole’s longevity. The obtained results demonstrated a noteworthy
degree of coherence between the two variables.
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Chapter 24
El Niño Southern Oscillation; A New
Prediction Tool

24.1 Present Understanding and Questions

Thecentral and eastern tropical Pacific experiencevast and erraticwarmingor cooling
when El Niño/La Niña, an oceanic event, occurs. There are important ramifications
to this phenomenon, including a discernible change in weather regime throughout
the Pacific. Alongwith variations in the strength of trade winds over the Pacific, these
changes include increased convection and cloudiness over the region of the central
tropical Pacific. Numerous research works (Cordero et al. 2024) have emphasized
the extensive effects of El Niño/La Niña.

The Southern Oscillation, named for the seesaw pattern of the pressure of the air
over the surface among the eastern and western parts of the South Pacific, is a crucial
link between the atmosphere and the oceanic phenomenon of El Niño/La Niña. The
Southern Oscillation Index (SOI), which is a measurement of the intensity of this
atmospheric phenomenon, is the name given to this oscillation. The difference in the
surface air pressure on a monthly basis between Tahiti (17° 40′ S, 149° 25′ W) and
Darwin (12° 27′ S, 130° 50′ E) is used to calculate the SOI.

It is commonly known that El Niño episodes are linked to negative SOI
values, whereas La Niña episodes are linked to positive SOI values. This results
in the composite oceanic-atmospheric phenomenon known as the El Niño/La
Niña Southern Oscillation (ENSO) (Fig. 24.1). Wunsch (1999) proposes that the
ocean’s reaction to random atmospheric forcing accounts for a part of the El Niño
phenomenon. Because ENSOs have climatological effects in areas known as tele-
connections that extend beyond the tropical Pacific, forecasting ENSOs is a matter of
global concern. Severe weather events like droughts and floods, shifts in the preva-
lence of epidemiological illnesses like malaria, extreme coral bleaching, civil unrest,
and other events can all have an impact.

As a result, climatologists have found ENSO to be a useful climate indicator
(Stenseth et al. 2003). For instance, Eastern Australia suffered greatly as a result
of the most powerful La Niña ever recorded from 2010 to 2011, which led to the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
G. Golitsyn and C. Varotsos, The Stochastic Nature of Environmental Phenomena and
Processes, https://doi.org/10.1007/978-3-031-77015-9_24

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-77015-9_24&domain=pdf
https://doi.org/10.1007/978-3-031-77015-9_24


232 24 El Niño Southern Oscillation; A New Prediction Tool

Fig. 24.1 The warm phase of the Southern Oscillation (ENSO) in the tropical Pacific region is
known as El Niño. Usually, it starts with the water’s temperature along South America’s western
coast rising significantly

nation’s second-wettest year ever (National Climate Centre, Bureau of Meteorology
2012).

The objective in climate prediction is to create methods that produce the most
precise forecasts for specific cases, like one location at a given time, while simul-
taneously attaining the highest level of proficiency over a set of instances. It has
been highlighted that because of possible disruptions brought on by climate noise,
the best estimate might not match exact observed results in individual cases or
show consistent skill across a number of cases. Recent advances have improved
the measurement of the climatic effects associated with the ENSO phenomenon by
demonstrating that seasonal predictions of the three-month mean temperature at the
surface or precipitation can be accurate in specific seasons, locations, and situations.
The Seasonal Diagnostics Consortium’s efforts (Barnston et al. 2005) have helped
dynamical approaches to better understand climate variability and forecast seasonal
to decadal timescales become more widely understood.

There is no doubt that there is a limit to the accuracy of ENSO extreme predic-
tion using statistical and hydrodynamic combined atmosphere–ocean models. As a
result, geophysics continues to face the challenge of improving ENSO forecasting.
Several studies have brought attention to this limitation (e.g., Cheng et al. 2024). The
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complexity stems from the lack of current knowledge about ENSO, a quasi-periodic
interannual variability in global oceanic-atmospheric circulation that is nonstationary
and nonlinear.

Although there has been progress in the understanding of ENSO, much remains
to be learned.

Furthermore, ENSO happens erratically every 3–7 years or roughly every 4–5
years. This begs the fundamental question of whether there is a lead time for this
climate anomaly if it is easy to predict. Numerous coupled models have been used
to analyze and forecast ENSO phenomena in order to answer this question. The
special issue (vol 103, 1998) of the J Geophys. Res., which concentrated on the
Tropical Ocean Global Atmosphere (TOGA) program, reviewed these models in
great detail. Interestingly, these models take the equilibrium between atmosphere–
ocean for granted, but they ignore many extratropical teleconnections as well as
intraseasonal oscillations. In evaluating the predictions of various models, Anderson
and Davey (1998) take into account the variability in the features of ENSO severe
events, which can have a substantial impact on their effects.

A multivariate linear stochastic differential equation with a nonnormal linear
operator appears to be able to describe seasonal variability of the sea surface temper-
atures (SSTs) in the tropics, including El Niño events, based on a substantial body of
evidence. Research like that done by Penland and Sardeshmukh (1995) has proven
this. However, resolved nonlinearities might also be significant at finer resolutions,
like monthly scales. In spite of this, general circulation tools are now able to forecast
the pattern, amplitude, and temporal progress of tropical SST more accurately than
linear statistical models thanks to recent developments. Notably, Saha et al. (2006)
have demonstrated these models’ efficacy. It is crucial to remember that these linear
stochastic tools do not disregard nonlinearities; rather, as Ruelle (1991) explains, the
stochastic behavior results from rapidly fluctuating, unresolved chaos. It is important
to note that there is disagreement over this description of El Niño and that there is still
discussion about whether or not it is a nonlinear system with resolved nonlinearities.

El Niño is an irregular occurrence that is occasionally called quasi-periodic,
though there isn’t much data to back up this assertion. The SOI webpage of the
Climate Prediction Center of the National Oceanic and Atmospheric Administra-
tion correctly reports that the ENSO cycle normally lasts four years, with histor-
ical records indicating variations between 2 and 7 years. Numerous observational
studies have provided evidence that the ENSO is a wide-ranging phenomenon with
a broad peak period. On the other hand, the ENSO component and its intensity vary
significantly over decadal and interdecadal temporal frames. Using a basic delayed
oscillator tool, Eccles and Tziperman (2004) demonstrated that in a weakly nonlinear
pattern, the period increases with amplitude of the ENSO cycle, whereas in a highly
nonlinear regime, a larger amplitude of the ENSO cycle results in a limited period.

An and Wang (2000) discovered that the ENSO period changed from two to four
years between 1962 and 1975 to four to six years between 1980 and 1993. This change
was highly dependent on both the meridional scale of wind stress and the zonal phase
lag between sea surface temperature and wind stress. The North Pacific experienced
an interdecadal climate shift at the same time as this ENSO period change. After
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examining observed data, Lin (2007) proposed that there were four specific ENSO
periods: three years before 1910, four to seven years during 1910–1965, three to
four years during 1965–1980, and four to five years after 1980. These results are
consistent with many earlier studies (e.g., Mann et al. 2005).

Kirtman (1997) ran simulations with limited, wide, and control scenarios and
found that, although the control simulation had a 5-year period, the period decreased
to roughly 3 years with a narrower anomaly and increased to roughly 9 years when
a wider wind stress anomaly was used. The presence of increased meridional mode
Rossby waves, which have reduced phase speeds and thereby result in longer delays,
could be one explanation for the lengthy periods linked to the wider meridional
structure in the wind stress anomaly. The large variations in the forcing of the gravest
Rossby mode brought about by the widening and contracting of the wind stress
anomaly structure offer yet another possible explanation.

24.2 A New El Niño Prediction Model; The 1982–1983
and 1997–1998 Events

Varotsos et al. (2016a) conducted a study to examine the temporal changes in the
ENSO using a new time field known as natural time (NT). The investigation spanned
from January 1876 to November 2011 and was detailed in Chap. 23. The results of
this exploration revealed that themajor ENSO extremes exhibit precursor signals that
reach their maximum intensity within a temporal interval of approximately 2 years.
This significant result has the potential to increase the precision of forecastingmodels
for extreme ENSO events, thereby facilitating measures to mitigate the detrimental
impacts associated with this phenomenon.

In their study, Varotsos et al. (2016a) analyzed the SOI monthly averaged data
from January 1876 to November 2011. The SOI calculation in this study followed
Troup’s formula (Troup 1965), which is expressed as the deviation among the Tahiti
(PA Tahiti) pressure anomaly and the Darwin (PADarwin) pressure anomaly divided
by the standard deviation of the deviation in air-pressure between Tahiti and Darwin
(SDD):

10 × [PA(Tahiti) − PA(Darwin)]/SDD (24.1)

According to the definition of a pressure anomaly, it is the monthly average sea
level (air) pressure difference between Tahiti (P Tahiti) and Darwin (P Darwin) from
the long-term mean of the pressure difference for each month (relatively the period
from 1887 to 1989). It is significant to remember that the normalized average sea
level pressure difference between Tahiti and Darwin is the source of Troup’s monthly
SOI data starting in 1876.

The oscillation in surface air pressure among the eastern and western parts of
the South Pacific is reflected in the SOI, as was previously mentioned. The largest
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region in the world with warm water temperatures (above 28 °C) is the western
South Pacific, which is also thought to be a major cause of air warming that drives
large-scale convective circulation processes. As a result, in the exchange of energy
between the combined ocean–atmosphere systems, the SOI is essential.

24.2.1 Application of the Natural Time Analysis
to the Southern Oscillation Index

The natural time analysis (NTA) is used in the subsequent steps to analyze the SOI
dataset that was discussed in the preceding section. First, the initial SOI dataset of N
events, designatedQk (k = 1, 2,… N) Qk, is converted into a new dataset by keeping
the temporal order of extremes intact but ignoring their incidence times. In order to
do this, the ratio (χk) among the number of SOI values (N) and the order in which
they occur (k) is calculated for each SOI value (Qk) as follows:

χk ≡ Order of occurrence of amaximum

Total number of themaxima
= k

N
(24.2)

This process introduces a new series consisting of pairs (Qk , χk). The new param-
eter (χk), referred to as “natural time,” replaces the conventional time (t) and ranges
from zero to unity. Unlike the continuous conventional time, natural time (NT) is not
continuous. It serves as a marker of the occurrence of the kth maximum, increasing
in intensity (Qk) with each subsequent kth maximum. Furthermore, since Qk in NT
denotes an intensity (i.e., a positive value), we take Qk = SOIk + min(SOI), where
min(SOI) is the lowest value that the SOI achieved during the period of the study.

To provide a concise explanation of the NTA methodology, let us consider a
segment of the SOI maxima dataset (illustrated in Fig. 23.1a of Chap. 23). The
transformed dataset, which represents the progression of the (Qk , χk) pair or, in
simpler terms, the initial dataset converted into theNTfield, is displayed in Fig. 23.1b
(Chap. 23).

In the scenario of a “uniform” pattern (such as when the system is in a steady
condition and releases energy in the form of uncorrelated pulses), the Qk takes posi-
tive unbiased and stochastic values. As the number of observations (N) approaches
infinity, the probability value p(χ) of the NT variable χ tends towards p(χ) = 1,
producing the following average NT value:

〈χ〉 =
1∫

0

χp(χ)dχ = 1

2
(24.3)

Furthermore, as stated by Varotsos et al. (2005), the following formula is used to
determine the entropy (S) of SOI values in the NT field is S ≡ 〈χlnχ〉 − 〈χ〉 ln〈χ〉,
where:
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〈χ〉 =
N∑

k=1

pkχk , 〈χ ln χ〉 =
N∑

k=1

pkχk ln χk

pk = Qk/

N∑
n=1

Qn

and pk represents the normalized intensity of the kth maximum. It is possible to think
of pk as a probability because it is less than unity and the sum of all pk values equals
unity, pk . Hence, the entropy (S) is given by the equation:

S =
N∑

k=1

pkχk ln χk −
(

N∑
k=1

pkχk

)
ln

(
N∑

m=1

pmχm

)
(24.4)

This entropy calculation is performed for a moving segment of SOI maxima
(monthly averages) with a size (i) that increases by 1 month each time, covering the
entire dataset of the SOI. The values are computed using a moving segment with
length three months (i = 3) at first, and then it is repeated using segments that are
longer up to 7 years (84 months) (i = 3, 4,…, 84). The maximum ENSO period of
seven years is closely aligned with the upper limit of 84 months.

Furthermore, identical entropy computations are made, as described previously,
but this time taking into account time reversal. For instance, in reference to Fig. 23.1,
the last maximum is now considered to be the first, the second-to-last maximum
as the second, and so on. It was found that this entropy, represented as (S − ),
generally differs from S. As a result, the entropy in NT highlights the breaking of
time reversal symmetry and emphasizes how important it is to take the (true) time
direction into account when differentiating between signals that appear to be similar
but have different dynamics. It is important to emphasize that both stochastic and
deterministic processes can be understood in terms of entropy in NT. Last but not
least, a moving segment i (which represents the number of consecutive maxima, or
the number of months in the sliding segment) is used to calculate the discrepancy
ΔSi = Si − (S − )i for each (S) and (S − ).

For example, Fig. 24.2 illustrates the change in entropy over NTwith time reversal
ΔSi for a segment length of i = 36 months (red, left scale) moving by 1 month each
time throughout the entire dataset (spanning from January 1876 to November 2011)
of SOI (blue, scale on the right). A shorter subset of the dataset that shows the
relationship between Δ Si (e.g. ΔS20) and SOI is demonstrated in the following.

Physically speaking, it was shown that a negative ΔS and likewise are correlated
with an increasing trend in the dataset. The physical significance of ΔS is further
explained by looking at tiny increasing and decreasing trends to clarify its definition.
In this case, the expression for p(χ;ε) is as follows, assuming that ε is the trend
parameter (that is, ε > 0 denotes a rising trend and ε < 0 denotes a falling trend):

p(χ; ε) = 1 + ε(χ − 1/2) (24.5)
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Fig. 24.2 The temporal evolution of the entropy change ΔS36 over 36 months (in red) on the left
scale, alongside the SOI values (in blue) on the right scale. To facilitate comparison, theΔS36 values
are shifted by onemonth, allowing for a direct comparison with the corresponding SOI values on the
same abscissa. This indicates that a window one month ahead of the SOI value is used to calculate
the ΔS36 value (Varotsos et al. 2016a)

where p(χ;ε) denotes the point probabilities discussed earlier. Subsequently, the
analytical calculation of entropy is determined as follows:

S(ε) = −1

4
+ ε

72
−

(
1

2
+ ε

12

)
ln

(
1

2
+ ε

12

)
(24.6)

It is clear from Eq. (24.5) that the entropy in NT under time reversal S − is
obtained by changing the sign of ε in Eq. (24.5). Hence, S(ε) − S − (ε) = S(ε) −
S(− ε) is equal to ΔS(ε). ΔS(ε) as a function of the slight trend parameter ε (i.e.,
ΔS(ε) where − 1/2 ≤ ε ≤ 1/2) is depicted in Fig. 24.3, demonstrating that a negative
(positive) ΔS(ε) trend corresponds to a rising (declining) trend.

Fig. 24.3 The change in
entropy, ΔS(ε), expressed
against the slight trend
parameter ε (Varotsos et al.
2016a)
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It is important to highlight that NT has been utilized in analyzing intermittent
dataset such as earthquakes, where specificmaxima can be simply spotted.Moreover,
NT has also been employed in datasets, where the values of the dataset itself (after
adjusting for a suitable constant to ensure positivity) constitute the quantity Qk; in
this scenario, the average values per month form the dataset.

The experimental robustness or stability of S and S − has been proven (Varotsos
et al. 2005). The Lesche stability criterion, whichwas first proposed by Lesche, states
that an entropic measure, like the one used in this demonstration, is stable if its vari-
ation due to a small perturbation in the distribution pk (which represents fluctuations
in experimental data) remains minimal. This was the basis for the demonstration.

24.2.2 Results of the Natural Time Analysis of the Southern
Oscillation Index

In the NT field, the change in the entropy is computed at different segment lengths,
ranging from three to eighty-four months. Utilizing the dynamics of ΔSi for the
purpose of forecasting future SOI maxima, the receiver operating characteristics
(ROC) tool has been employed to assess the efficacy of various prediction algorithms,
as demonstrated by Sarlis et al. (2011). Figure 24.4 shows the ROC graph that was
produced by using ΔSi as a binary predictor for SOI values in the following month
with various values of i (e.g., i = 6, 12, 20, 24, 48).

In essence, the windows utilized are one month ahead of the SOI, and this value is
transformed into a binary value according to whether it exceeds a particular threshold

Fig. 24.4 The hit rate
compared to the false alarm
rate considering varying ΔSi
and maintaining a steady
target value T (Varotsos et al.
2016a)
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T. A time increased probability (TIP) is triggered when ΔSi is greater than or equal
to a thresholdΔST . The prediction is deemed accurate if the monthly mean SOI value
in the subsequent month is less than or equal to a target value T. The false alarm
rate is the ratio of false alarms to the total number of cases where SOI exceeded T.
The ROC curve plots the true positive rate (hit rate) against the false positive rate
(false alarm rate). The hit rate is the percentage of correctly predicted large negative
monthly mean SOI using data from prior months to calculate ΔSi.

We can observe different curves for T = − 5 (weak El Niño maximum) or T =
− 15 (strong El Niño maximum) as shown in Fig. 24.4 by varying the change in ΔS
while maintaining the target value T constant. For example, Table 24.1 shows the
outcomes of predicting maxima with T = − 15 by using ΔS20 as a predictor and a
threshold of ΔST = 0.00326. It is important to remember that the black line on the
ROC graph represents the diagonal, which would be produced by a random predictor
(Table 24.1).

Based on the findings obtained using the ROC analysis, it is obvious that the
highest skill or best-hit rate is achieved when considering ΔS20 to ΔS24 (approxi-
mately 24 months before) as predictors based on SOI data. In this context, Fig. 24.5
illustrates the change in entropy in NT under time reversal ΔSi for a segment size of
i = 20 months. The red curve represents the scale on the left, while the blue curve
represents the scale on the right, corresponding to the entire time series of SOI from
January 1876 to November 2011.

Next, we attempt to forecast the maximum value of SOI using the proposed
NTA technique, taking into account that the reliability of SOI data before 1935 was
questioned by Trenberth and Hoar in 1997. We focus on predicting the most intense
El Niño episode of the previous century, which occurred in 1982–1983 and exhibited
a distinct pattern in terms of warming and onset time.

The SOI value (blue, scale on the right) and ΔS20 (red, scale on the left) are shown
in Fig. 24.6. The time increased probability (TIP) activation is shown by the black
line. The TIP is activated for the following month when ΔS20 exceeds the value ΔST ,
which corresponds to a false positive rate (false alarm rate) of 50% for T = − 5.

The outcomes derived from NTA analysis of the intense ENSO maximum in
1997–1998 are illustrated in Fig. 24.7. The progression of ΔS20 depicted in this
figure indicates that the occurrence of a more intense ENSO maximum could be
anticipated in advance through the utilization of the NTA tool. It is important to
highlight that comparable successful outcomes, as shown in Figs. 24.6 and 24.7,
were achieved when testing the NTA tool for predicting the more intense El Niño
maximum in 2009–2010. There were comparable outcomes for segment sozes 20 <
i ≤ 24 as well.

The quasi-biennial oscillation (QBO) in the tropical stratosphere’s zonal wind is
a plausible mechanism that could impact the roughly two-year time window. The
average meridional circulation is driven by this phenomenon, which causes warm
or cold anomalies to arise during the declining zonal average westerly or easterly
shear. In essence, the upper tropical troposphere’s deep convection is modulated by
the ENSO and QBO.
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Fig. 24.5 The time march of the entropy change ΔS20 in NT for the segment size i = 20 months
(red, scale on left) along with SOI (blue, scale on right) (Varotsos et al. 2016a)

Fig. 24.6 The time rising probability is placed on 1982–1983, the major ENSO maximum of the
twentieth century, when ΔS20 (red line) surpasses the threshold ΔST value (Varotsos et al. 2016a)

Fig. 24.7 As the NTA results for correctly predicting the 1997–1998 ENSO peak, one of the
strongest events of the twentieth century, are shown in Fig. 24.6. The horizontal red line denotes the
threshold ΔST for a 50% false positive rate. Table 24.1 shows that 422 out of 1496 cases, or about
28% of cases, are false positives. Thus, in order to attain a 50% false positive rate, it is necessary
to reduce the value of ΔST until 748 false positive predictions are made (Varotsos et al. 2016a)
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Further exploration of this distinct relationship is the primary focus of a forth-
coming publication. It is worth noting that the utilization of different segment sizes
is reminiscent of similar approaches employed in existing literature, such as the
“optimal climate normal” method proposed by Huang et al. (1996). However, the
method presented here differs significantly in terms of the timescale utilized and the
overall approach mentioned and implemented above.

As previously clarified, the interpretation of a rising trend in a dataset is repre-
sented by a negative change in entropy (ΔS), while a decreasing trend corresponds
to a positive change in entropy. Therefore, the predictive power of ΔS20 for the next
month’s value can be seen as an indication of the persistence of the SOI dataset.
However, ΔS also captures intrinsic dynamics.

Figure 24.8 illustrates this by comparing three predictors for the value of SOI
after a 24-month lag (SOI(k + 24)). The negative correlation between SOI(k) and
SOI(k + 24) is made clear in this example. The value of − SOI(k) (represented by
magenta and cyan lines with points, where T = − 5 and T = − 15) and − ΔS40(k),
which are represented by red and blue lines with points where T = − 5 and T = −
15, and − ΔS48(k), which are represented by red and blue lines without points, are
the predictors taken into consideration.

Fig. 24.8 Comparison of 3 predictors for the SOI future value, or SOI(k + 24), following a 24
month lag, denoted as is presented in this investigation. The three predictors under consideration
are − ΔS40(k) (represented by red lines with points for T = − 5 and blue lines with points for T
= − 15), − ΔS48(k) (represented by red lines without points for T = − 5 and blue lines without
points for T = − 15), and the value of − SOI(k) (represented by magenta lines with points for T
= − 5 and cyan lines with points for T = − 15). The study also includes the depiction of Receiver
Operating Characteristics (ROCs) associated with these predictors (Varotsos et al. 2016a)
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−ΔS40(k) is found to perform better than− SOI(k) in terms of false positive rates,
which range from 0.1 to 0.9. This outcome validates that the suggested approach
employing ΔS permits sophisticated forecasting, beyond its prior accomplishments.

The idea of a critical point provides another intuitive way to interpret the previ-
ously mentioned results. Based on the number of consecutive maxima within the NT
segment size used in the computation, we can think of S as an indicator of “disorder.”
When we get close to a phase change or critical point, the difference ΔS between
the disorder in the near future (S) and the disorder in the earlier past (S −) becomes
much more significant than the difference in ordinary circumstances.

This phenomenon is a direct consequence of the maximum amplitude of ΔS. It is
crucial to note the successive series of these maxima is important to observe when a
dynamic system goes through a phase transition. To illustrate this point, if we reverse
the order, the systemwill transition from the new phase back to the old one. To further
support this argument, we conducted a ROC analysis using S or S − as predictors.
The findings indicated that ΔS performed better than both of these predictors.

In conclusion, the characteristics of the change under time reversal of the NT
entropy explain the skill discovered during this analysis. The differentiated pathways
that add to the SOI’s value are quantified by this entropy.

24.2.3 The Precursory El Niño Signals

In the realm of weather and climate literature, new forecast methodologies undergo
rigorous testing before being introduced to the public. This testing entails evaluating
the forecast expertise with that of current methods in real-time over the course of
months or even years.

However, when it comes to long-term variability, such as phenomena like El Niño
which exhibit extreme values over extended periods, testing a forecasting method in
live time urges for decades of observational data. Rather than holding off until the
required long-term dataset is collected, it is more practical to assess the forecasting
tool using existing time series of observations.

Our primary objective is to determinewhethermajor ENSOpeaks serve as precur-
sory signals. The results of our analysis show that these peaks do produce early SOI
warnings, which peak after about two years. Based on recorded SOI values during
ENSOmaxima, these signals are used to forecast if an upcoming SOI peak surpasses
a specific target value. This prediction is binary, signaling either an impending event
or not, without specifying a precise value for the upcoming SOI peak.

This approach sets our method apart from traditional statistical methods, which
typically offer expected monthly values for the SOI. While a direct comparison
with existing tools is not feasible, an indirect comparison can be made by analyzing
ROC curves, concentrating especially on the region under the curve (A). A value of
A greater than 0.5 indicates a more effective predictor, as highlighted in previous
research by Mason and Graham (2002).
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Focusing on the most robust maxima, specifically T = − 15, the subsequent
outcomes are as follows: For the 24-month delay (refer to Fig. 24.8), It may be
estimated that the predictor − ΔS40(k) has an area A beneath the ROC curve of 0.63,
while the predictor − SOI(k) has an area A of 0.57. As a result, − ΔS40(k) predictor
is greater than − SOI(k). Considering the SOI value for the next month, the value of
A for ΔS20(k) is 0.80, indicating a strong forecast quality based on the data presented
in Fig. 24.4.

Therefore, a forecasting tool can be envisioned as follows: The most efficient
ΔSi(k) predictor can be initially found based on the forecasting time lag (which, as
previously shown, can be selected to exceed−SOI(k)). and subsequently, by amalga-
mating the respective outcomes, future predictors can be estimated for various time-
frames reaching forward several seasons. Nonetheless, such a prediction scheme
exceeds the scope of the current effort and will be explored in a future publica-
tion alongside an extensive comparison of our approach with the existing ENSO
predicting models and techniques.

24.2.4 Conclusions

The examination of the dataset of SOI using entropy in theNTfield enables the identi-
fication of certain features of the complicated atmosphere–ocean system’s dynamics
that could be utilized for detecting precursor signals of significant ENSO peaks.
Varotsos et al. (2016a) demonstrated that the computation of entropy change when
the SOI is reversed over the period from January 1876 to November 2011, with
varying window lengths ranging from three to eighty-four months, provides the
most robust precursor signal when the segment length is approximately two years.

This implies that calculating the SOI entropy change during the preceding 2 years
allows for a warning of ENSO maximum occurrence one month in advance. By
investigating the features of entropy change in the NT field of the SOI, we have
identified strong precursor signals for the major ENSO peaks in 1982–1983 and
1997–1998. Based on these findings, particularly the results of the ROC analysis, we
propose that combining our suggested method with existing forecasting tools may
enhance the precision of nowcasting ENSO extreme events.

24.3 The Prediction of the 2015–2016 El Niño Event

Varotsos et al. (2016b) conducted a prediction of the strong El Niño event that
occurred during 2015–2016. This was done by employing the Natural Time Analysis
(NTA) methodology, presented in Sect. 24.2. Thus Figs. 24.9 and 24.10, illustrate
the monthly values of the SOI and the entropy change in NT under time reversal
(S20) for a segment size of 20 months.
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Fig. 24.9 TheΔS20 in NT for the segment size i= 20months (red line, left scale) with SOImonthly
values (blue line, right scale) from January 1980 to October 2015. The alarm is activated on (black
line) when S20 is greater than the limit (threshold value) Sthres = 00.035 (Varotsos et al. 2016b)
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Fig. 24.10 Similar to Fig. 24.9, but only for the El Niño occurrences of 1982–1983, 1997–1998
(the two strongest in the past century), and 2015–2016

To further assess the intensity of the 2015–2016 El Niño event and determine if it
can be classified as a “very strong” or “one of the strongest on record,” a number of
scientists brought up the categorization and description of previous El Niño episodes.
The colored areas in Figs. 24.9 and 24.10 correspond to the mean minimum negative
values of SOI for the categories of “weak, weak to moderate, moderate, moderate to
strong” (green band) and “strong, very strong” (yellow band) El Niño occurrences.
These values also include the 1 standard deviation band.

The SOI values for the previous three months fall inside the green band and at
the boundaries of the yellow band, as Fig. 24.10 makes evident. It would be more



24.3 The Prediction of the 2015–2016 El Niño Event 247

accurate to describe the 2015 El Niño event as “moderate to strong” or perhaps
“strong” than as “one of the strongest on record.” This conclusion is further supported
by comparing it with the El Niño events of 1982–1983 and 1997–1998. Additionally,
the variation of S20 during the 2015 El Niño event, compared to the events of 1982–
1983 and 1997–1998, is not as pronounced. Hence Varotsos et al. (2016b) concluded
that this confirms that the 2015–2016 El Niño event was not “one of the strongest
on record.” As other models predicted. To quantify this variation, Varotsos et al.
(2016b) calculated the probability density function (PDF) of S20, obtained from the
estimator:

fN (�S20) = 1

N

N∑
i=1

1

bN
K

(
�S20 − Oi

bN

)
,

Figure 24.11 displays this estimatorwith a black curve. The values of S20 observed
since the commencement of the study are denoted by Oi, where i represents the
individual observations. The total number of observations is represented by N. The
kernel K (x) is only non-zero for|x| < 1, with a value of K(x) = 3/4(1 − x2). The
relationship between bN and the standard deviation of the observed S20 values is given
by bN = 10.25 σ/N0.34, as proposed by Mercik et al. (1999). Analysis of Fig. 24.11
reveals that S20 is rarely greater than the value of 0.02, as evidenced by the red
histogram generated using the TISEAN package and displayed in Fig. 24.11.

The histogram displays the bar’s lowest non-zero height, which corresponds to S20
= 0.002, and it spans the range up to roughly 0.0205. Blue crosses on the right axis of

Fig. 24.11 The PDF of S20 (black curve, left scale) and the matching histogram (red bars, left
scale) derived from the S20 dataset, which is also illustrated along the vertical axis against time
(blue crosses, right scale). The arrows, which are termed with the corresponding El Niño events
from 2014 to 2016, show when S20 is greater than 0.0205



248 24 El Niño Southern Oscillation; A New Prediction Tool

Fig. 24.11 represent a plot of the dataset of S20 against time, which is used to identify
the instances where S20 exceeds this threshold. The plot (blue arrows in Fig. 24.11)
makes it clear that S20 > 0.0205 is only seen during the three major El Niño events
that occurred in 1905–1906, 1982–1983, and 1997–1998. But in the current scenario
(2015–2016 El Niño), this imbalance is not met because the observed values are
significantly lower than 0.0205, close to 0.01.

In summary, rather than being referred to as “one of the strongest on record,” the
El Niño event of 2015–2016 should be categorized as “moderate to strong” or even
“strong.”

24.4 Forecasting the 2023–2024 El Niño Event

Varotsos et al. (2024) have released a feature article predicting the El Niño event for
2023–2024. The colored areas in Fig. 24.12 represent the mean minimum negative
SOI value.

The 1σ standard deviation bands for two categories of El Niño events—“strong,
very strong” (yellow band) and “weak, weak to moderate, moderate, moderate to
strong” (green band)—accompany these areas. Figure 24.12 shows that the monthly
SOI events that occurred during 2015–2016 are located close to the yellow limit and
inside the green zone.

Varotsos et al. (2024) set out to further investigate claims of a very strong El
Niño occurring in 2023–2024 based on their prior experience in forecasting major
El Niño events. The monthly SOI events from January 2021 to May 2023, as shown
in Fig. 24.12, do, however, continuously stay above the green zone following an
upward trend. There was a sharp drop in June 2023 without any sign of a strong El
Niño. Moreover, the changes in ΔS during the El Niño event of 2023–2024 are not
as noticeable as the previous variations during the El Niño events of 1982–1983 and
1997–1998. Only in May and June 2023 is an alarm (i.e., S ≥ ΔSthresh) detected.

Varotsos et al. (2024) presented the ΔS histogram and the probability density
function (PDF) (Fig. 24.13) obtained using the kernel estimation tool outlined in
Sect. 24.3 (Fig. 24.11) in order to evaluate the degree of ΔS variation associated with
SOI variation.

Varotsos et al. (2024) summarized the NTA model and found that the El Niño
event of 2015–2016 had been classified as a “moderate to strong” event, contra-
dicting the claims made by several models that it would be one of the strongest on
record. It should be noted that this method has already been applied in other climatic
components (e.g., Varotsos 2020a, b).
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Fig. 24.12 Monthly SOI
events showcasing a blue
line on the right scale,
plotted against time. The
change in entropy (�S20) is
illustrated in a time-reversed
scheme with a red line on the
left scale, covering during
January 2010–July 2023.
The graph includes the mean
minimum negative SOI
values, complemented by 1σ
standard deviation zones
indicating the intensity of El
Niño events, ranging from
“weak” to “very strong” as
represented by green and
yellow bands, respectively.
An alarm is triggered when
the entropy change surpasses
the cutoff point of �Sthresh =
0.0035, marked by a red
straight line. It is important
to note that the SOI values
have been shifted by one
month to facilitate a more
straightforward comparison
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Fig. 24.13 The black curve on the left scale represents the PDF of ΔS, and the red bars on the same
scale represent the relevant histogram. The ΔS dataset, spanning during January 1880–July 2023,
provided these values. The blue points on the right scale show how ΔS_20 changes over time along
the vertical axis. The vertical dashed black line represents the entire dataset; blue arrows indicate
theΔS values that exceed the 99% percentile, p99% = 0.02 of the total dataset. Strong El Niño events
are linked to these extreme values. During January 2021–July 2023, the ΔS values are represented
by the red points and label (Varotsos et al. 2024)
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Chapter 25
Other Applications of Natural Time
to Extreme Phenomena

25.1 The Variance Properties of Natural Time

In the Natural Time Analysis described in Sect. 23.2.1 an interesting scenario arises
when the increments of the timeseries ofQk are positive independent and identically
distributed (p.i.i.d.) random variables with finite variance. Initially, we focus on the
case where the increments of the Qk timeseries are p.i.i.d. random variables rn with
finite variance. In this particular case Qk can be expressed as the sum of rn from n
= 1 to k:

Qk =
k∑

n=1

rn (25.1)

Consequently, Qk exhibits a linear relationship with k on average. As a result, it
is anticipated that the continuous distribution p(χ), which corresponds to pk can be
represented as p(χ) = 2χ. By utilizing the expression for variance κ1 of natural time
given by Equation:

κ1 =
∫ 1

0
p(χ)χ2dχ −

(∫ 1

0
p(χ)χdχ

)2

(25.2)

a direct computation yields κ1 = 1/18≈ 0.056. This value significantly deviates from
κu ≈ 0.083, which corresponds to the "uniform" distribution.

Considering that the increments possess finite variance, the distribution of Qk

for a given N also possesses finite variance. Therefore, based on the findings of the
previous Sect. 23.2.1, it is expected that when Qk is randomly shuffled, the resulting
κ1 values will exhibit a scattering effect around κu. A numerical example illustrating
this phenomenon for exponentially distributed increments is depicted in Fig. 25.1.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
G. Golitsyn and C. Varotsos, The Stochastic Nature of Environmental Phenomena and
Processes, https://doi.org/10.1007/978-3-031-77015-9_25

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-77015-9_25&domain=pdf
https://doi.org/10.1007/978-3-031-77015-9_25


254 25 Other Applications of Natural Time to Extreme Phenomena

Fig. 25.1 The pdf of κ1 that
has been obtained by
shuffling the Qk randomly in
the case of exponential
increments, i.e., rn are
randomly drawn from an
exponential distribution.
Here, N = 500, and the
original time series results in
κ1 = 0.055

In the following, we focus on the value of κ1 when a (natural) time window is
sliding through power-law distributed energy bursts.

25.2 Prediction of Earthquakes, Icequakes, Solar Flares,
and Microfractures

Wewill nowexamine a scenario of self-similarity that arises from the infinite variance
of the increments. Our focus is on systems that are driven slowly and produce energy
bursts following a power law distribution with a constant γ:

P(E) ∼ E−γ (25.3)

Through an analysis of experimental data from various fields, it is observed that
the γ exponent typically falls within a narrow range of 1.5 ≤ γ ≤ 2.1, with an even
narrower range of 1.5–1.8. To illustrate the range of phenomena displaying this
characteristic, we present some representative examples in Table 25.1.

Crystalline materials under external stress exhibit bursts of activity due to the
nucleation and movement of dislocations. These localized changes generate acoustic
emission waves, indicating cooperative movement of numerous dislocations inter-
mittently. For instance, acoustic emission experiments on stressed ice single crystals
undergoing viscoelastic deformation reveal a power law distribution of energy burst
intensities with γ = 1.6.

Similarly, intermittent plastic flow observations in nickel microcrystals also show
an exponent of γ = 1.60 ± 0.02.

Solar flares, representing sudden energy releases in the solar corona, exhibit
similar power law distributions in energy sizes, inter-occurrence times, and temporal
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Table 25.1 Compilation of the experimental values of the power law exponent γ determined in
different physical processes (Varotsos et al. 2006)

Process/type of measurement γ

Dislocation glide in hexagonal ice single crystals (acoustic emission) 1.6

Intermittent plastic flow in nickel microcrystals 1.6

Solar flares 1.5–2.1

Microfractures before the breakup of wood (acoustic emission) 1.5

Microfractures before the breakup of fiberglass (acoustic emission) 2.0

Earthquakes 1.5–1.8

Icequakes ≈ 1.8

clustering as earthquakes. The statistical analysis of these events demonstrates power
law distributions with exponents γ ranging from 1.5 to around 2.1.

Other examples include acoustic emissions from microfractures before the
breakup in heterogeneous materials (wood, fiberglass), icequakes, and earthquakes.

The subsequent method is currently implemented. A substantial quantity
(500,000) of synthetic data following Eq. (25.3) for a specific γ valuewith energyE ≥
1 is generated and then randomly rearranged. This process was iterated for different γ
values while maintaining a constant total number of events (indicating that altering γ
also changes the maximum energy considered in the computation). The randomized
(“shuffled” data are subsequently examined in the natural time domain: the computa-
tion of the variance κ1 is conducted for an event encompassing timewindows ranging
from l = 6–40 consecutive events.

The determination of the specific upper limit value for l is not considered crucial,
as similar outcomes are achieved regardless of whether the range of consecutive
events is adjusted from 6–40 to 6–100. Additionally, this procedure was executed
for all events (across all l values, such as between l = 6 to l = 40) by thoroughly
examining the entire dataset. Figure 25.2 illustrates the plot of the probability density
function P(κ1) against κ1 for various γ values. Furthermore, Fig. 25.3 displays the
plotted most probable value κ1,p (for a constant γ) in relation to the corresponding γ
value.

The relationship between κ1 and γ for the shuffled data leads to the destruction of
a process’s memory, resulting in the plotted κ1,p values reflecting self-similarity due
to the heavy-tailed distribution, distinct from κu.

In brief, the source of self-similarity can be differentiated in the followingmanner:
If self-similarity arises solely from the memory of the process, the κ1 is expected to
change to κu = 1/12 for the (randomly) shuffled data. This scenario applies to Seismic
Electromagnetic Signals (SES). On the contrary, if self-similarity is a result of the
“infinite” variance in the process’s increments, the most likely value κ1,p should be
the same for both the original and the (randomly) shuffled data, although different
from κu. When both sources of self-similarity coexist, the relative influence of one
source compared to the other can be quantified by the expectation value of κ1.
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Fig. 25.2 The probability
density function P(κ1) versus
κ1 for several γ (Varotsos
et al. 2006)

Fig. 25.3 The values of κ1,p
as a function of γ for
power-law distributed data.
The continuous line has been
drawn as a guide to the eye.
Note that κ1,p ≈ 0.070 for γ
≈ 1.87, see also Fig. 25.2
(Varotsos et al. 2006)

The values of the coefficient κ1, denoting the variance of natural time, can be
utilized to determine the approach towards a critical point, of a dynamical system.
The κ1 value is observed to be 0.070 for several dynamical systems approaching
criticality. Thus, it provides a prediction parameter for the arrival of an extreme
event that might be disastrous.

Moreover, natural time analysis allows for the differentiation between the two
sources of self-similarity, namely whether it arises solely from long-range temporal
correlations (the process’s memory alone) or solely from the infinite variance of the
process’s increments (heavy tails in their distribution). However, in general, self-
similarity may arise from both of these sources, a scenario that can also be identified
through natural time analysis.
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25.3 The Cosmic Rays Spectrum Properties Revealed
in the Natural Time Domain

Varotsos et al. (2024) explored the temporal evolution of the CR power spectral
density derived from long-term terrestrial observational data. This investigation
aimed to shed light on the validity of the ‘5/3 law’ in the CR spectrum.

Both the conventional and natural time domains have been considered using the
daily CR data of the real-time neutron monitoring stations at the Athens Neutron
Monitor Station (A.NE.MO.S) (http://cosray.phys.uoa.gr), Jungfraujoch (Switzer-
land), and Oulu (Finland) sites provided by the High-Resolution Neutron Monitor
DataBase-NMDB (http://www.nmdb.eu/) (Christodoulakis et al. 2019;Mavromicha-
laki 2010; Mavromichalaki et al. 2011, 2018; Varotsos et al. 2023a, b; Xaplanteris
et al. 2021). These stations were selected based on the length of their data time-series.
The characteristics of these stations are listed in Table 25.2.

The effective vertical cutoff rigidity denotes the minimum rigidity a charged
particle requires to reach the middle atmosphere in vertical directions (20 km
altitude). Research has shown that it almost remains stable for European CR stations.

These averages were computed over the period from 2000 to 2017 and then
subtracted from the corresponding CR time series for that specific day. Addition-
ally, the long-term trend of the CR time series was eliminated through a 6th-degree
polynomial regression analysis.

In the data mentioned above, Varotsos et al. (2024) applied the natural time
analysis described briefly in Sect. 23.2.1. Using Eq. (25.4)

Sk =
k∑

j=1

PjNjln(Nj) −
⎛

⎝
k∑

j=1

PjNj

⎞

⎠ln

(
k∑

i=1

PiNi

)
(25.4)

Table 25.2 The list of the stations used in this study for the period 11/2000–10/2023

Station
(Neutron
monitor)

Coordinates Altitude
(above sea
level-asl)

Effective
vertical cut-off
rigidity (GV)

Organization

Athens NM64
(A.Ne.Mo.S)

37.97°N,
23.78°E

260 m 8.53 National and Kapodistrian
University of Athens, GR

Jungfraujoch
IGY (JIGY)
(NM64)

46.55°N,
7.98°E

3570 m 4.5 Physikalisches Institut of the
Univ. of Bern, CH
Int Foundation & High-Altitude
Research Stations Jungfraujoch
Gornergrat (HFSJG), Bern CH

Oulu NM64
station
(OULU)

65.05°N,
25.47°E

15 m 0.8 Sodankyla Geophysical Obs. of
the University of Oulu, FI

http://cosray.phys.uoa.gr
http://www.nmdb.eu/
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the entropy S = Sk is calculated for a sliding window of k-length, each time by 1 day,
running the entire CR time series of theN-events. Then, we consider the window size
k = 730 days (2-years) and we calculate S730 for the past 730 days and this window
is sliding, each time by 1 day, and ran the entire CR time series of N-events.

The selection of the 2-year window size was not arbitrary. The equatorial lower
and middle stratosphere goes through a regular cycle known as the quasi-biennial
oscillation (QBO). This cycle lasts for 2–3 years (average period 28 months) and is
characterized by alternating patterns of westward and eastward zonal wind. Along
with the zonal wind, the QBO also brings changes in temperature, trace constituents,
and mean meridional circulation.

The QBO has a significant impact on the equatorial lower andmiddle stratosphere
and also affects other parts of the atmosphere, such as the tropical troposphere,
tropical upper stratosphere and mesosphere, the extratropical middle atmosphere
during winter, and sudden stratospheric warmings of the high latitudes. Therefore,
the QBO influences climate phenomena beyond the tropical stratosphere, including
ozone transport, theNorthAtlantic, and theMadden–JulianOscillations (Anstey et al.
2022). However, simulating the QBO is challenging due to uncertainties surrounding
the waves that drive the oscillation, particularly the momentum fluxes from small-
scale gravity waves caused by deep convection.

Despite the complexity and unpredictability of these wave motions, the
predictability of the QBO is remarkable, considering their wide range of spatial
and temporal scales. Hopefully, by improving our understanding of the processes
that control the QBO, we can also gain insight into unexpected events like the two
QBO disruptions observed since 2016.

Varotsos et al. (2018) investigated the unusual equatorial QBO event in the zonal
wind in 2016 and suggested that it was not related to any previous events. They used
NTA to analyze the QBO data and found a precursor behavior before the increase in
zonal wind velocity, indicating a possible connection with the strong El Niño event
in 2015–2016.

In addition, their previous research on the dynamics of the ozone hole in the
Antarctic and the El Niño phenomenon showed that a window of approximately 2–
3 years was optimal for detecting critical system states (Varotsos and Tzanis 2012;
Varotsos et al. 2010, 2016, 2024).

Since the CR data utilized in this study were collected from instruments on the
ground, it is logical to consider that they may be influenced by natural atmospheric
fluctuations, like the QBO (Kang et al. 2024). This is why we opted for a 2-year
window size as the threshold for our NTA analysis.

Consequently, considering the potential impact of QBO on the CR flux reaching
the ground, we calculated the exponent γ of the power-law fit to the power spectral
density of Εj values ( j = 1,2,…, k) as a function of frequency, compared to Sk using
the sliding window of length k. This analysis was performed on the entire CR time
series of the N-events at OULU station.

Bearing in mind the afore-mentioned discussion on the potential influence of the
QBO to the CR flux reaching the ground, we proceed calculating the exponent γ of
the power-law fit to the power spectral density of Ej values (j = 1, 2, . . . , k) as a
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Fig. 25.4 Power law exponent γ of the Ej values (j = 1, 2, . . . , 730) as a function of frequency
versus S730, for the above-mentioned sliding window of 730-length, running the entire CR time
series of the N-events at OULU station, expressed as 30-day running mean of the data (red line).
Interestingly, we find that one of the points with S730 = Su (=0.0966) corresponds to γ = − 5/3 ≈
− 1.67 (blue coordinates and green star)

function of frequency, versus Sk employing the above-mentioned sliding window of
k-length, running the entire CR time series of the N-events at OULU station.

The results obtained are shown in Fig. 25.4 where plots of the γ-exponent versus
S730 for the CR dataset at OULU station smoothed by applying the 30-day running
mean (red line) are presented. It can be seen that the γ-value varies from − 1.9 to −
1.3, as the sliding window of 730-length runs the entire CR time series. Moreover,
it is noteworthy from Fig. 25.4 that the maximum value of S730 is observed for γ =
− 1.67 = − 5/3.

It should be emphasized that for the uniformdistribution (u), (e.g.when our system
is in a stationary state emitting uncorrelated bursts of energy) Eq. (25.4) gives the
entropy Su of the uniform distribution (Varotsos et al. 2004):

Su = (ln 2)/2 − 1/4 ≈ 0.0966, where γ = −1.67 (see Fig. 25.4)

This is reminiscent of the fact that according to Varotsos et al. (2006) the experi-
mental data of systems emitting energy bursts, when analyzed byNTA, show that they
obey a power-law distribution with an exponent γ between 1.5 and 2.1. For example,
this exponent is between 1.5 and 2.1 in solar flares, and 1.5 and 1.8 in earthquakes
and takes the value 1.8 in the case of icequakes (Fig. 25.2). Consequently, this very
important result may be used for the prediction modelling of the CR extreme events
and their interplay with other geophysical phenomena.

Next, the same analysis was conducted on the data collected at JIGYNM and
Athens stations (see Fig. 25.5). The results indicate that the power law exponent
corresponding to the maximum S730 value is γ= − 1.59 and γ= − 1.54 at JIGYNM
and Athens stations, respectively. Both values deviate from the − 1.67 (− 5/3) that
was found at OULOU. It is noticeable that the exponent’s value displays the most
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Fig. 25.5 As in Fig. 25.4, but for the Stations JUNG and ATHENS

significant deviation from − 5/3 in the data from Athens’ station, the southernmost
station.

This variation could be attributed to the notably highermaximumeffective vertical
cut-off rigidity at the Athens station, which exceeds that of OULU by more than
tenfold. It is essential to emphasize thatmagnetic rigidity is defined as themomentum
of a charged particle divided by its electric charge, then multiplied by the speed of
light.

This fundamental quantity plays a critical role in studying the motion of charged
particles within a magnetic field, as particles with the same rigidity and initial condi-
tions will follow identical paths in a specific magnetic field. This does not hold in
the case of the selected three stations, in our study.

It should be stressed that variations in atmospheric parameters impact the genera-
tion multiplicity of CR secondary particles, with barometric and temperature effects
playing a significant role. While the neutron component is mainly influenced by
barometric effects (taken into account in the data used here), there is evidence of a
humidity effect that has been historically overlooked but may have an impact on CR
neutron intensity near Earth’s surface (Dorman 1957, 1972, 1975). Neutrons formed
in the atmosphere through interactions with CR undergo elastic collisions, losing
energy and eventually being absorbed.

The rate of neutron production in the atmosphere remains constant, but variations
in water vapor content cause intensity variations in the detected neutron component
(Zrenda et al. 2012).

Furthermore, the neutronfluxdensity nearEarth’s surface is inversely proportional
to air and soil humidity (Yanchukovsky et al. 2024). Although the humidity effect is
much less than the barometric one, the neutron energy spectrum displays information
about moisture.

As highlighted in the Introduction, CRflux is connected to climate change. Hence,
climate modeling must incorporate our findings for enhancement. For instance, CRs
ionize the atmosphere, forming cloud condensation nuclei leading to cloud formation
acting like an “umbrella”. For example, when the CR flux decreased (because of the
increased solar wind from sunspots), there was a decrease in cloud cover, which
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could potentially lead to warming (Svensmark et al. 2007, 2017). Some scientists,
however, have raised doubts about the connection between CR and cloud cover and
argue that just because there is a correlation doesn’t mean there is causation (Erlykin
et al. 2011).

By summarizing, the above analysis and discussion, demonstrate that the observed
temporal evolution of CR deduced from several stations of the terrestrial network
exhibits a power spectral density consistent with the finding that the energy spectrum
of CR obeys the Kolmogorov-Obukhov 5/3 law, which has already been confirmed
in several geophysical quantities (Golitsyn 2023, 2024; Varotsos et al. 2006).

It is observed even more so when the frequency is less than 10–1 day−1. Further-
more, with the natural time analysis we showed that the 5/3 Kolmogorov-Obukhov
power law is also related to the maximum value of CR entropy in which the QΒΟ
was revealed as a leading index.

This CR behaviour is consistent with the finding that systems emitting energy
bursts (such as solar flares, earthquakes and icequakes) obey a power-law distribution
with an exponent between 1.5 and 2.1. This may be used for the prediction of the CR
extreme events, as in prediction problems maximized entropy gives the maximum
room for the data to reveal secrets hidden and ensures that no unconscious arbitrary
assumptions are introduced into the method used (Jaynes 1957, 2003).

Consequently, there are several unanswered questions in the CR domain, such
as the origin and mass composition of ultra-high energy CR and how they achieve
extreme energies (Alves Batista et al. 2019). These questions drive ongoing research
and exploration, pushing the boundaries of our understanding of CR and the universe.
It is increasingly imperative considering that CR have made a lasting mark on
early life and could have affected certain crucial biological aspects with potential
consequences.
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Chapter 26
The Climate Linear and Non-linear
Regime

26.1 Current and Missing Knowledge

26.1.1 The Concept of Linearity and Non-linearity

The general circulation model (GCM), a method for modeling climate change, is
predicated on the idea that, in contrast toweather, climate is a boundary value problem
(Pielke 1998). This indicates that while weather shows a sensitive dependence on
initial conditions, making it unpredictable over short timescales, averaging over a
large enough sample size causes the weather to converge towards the climate of
the model. The climate, also known as control runs, is the state at which specified
atmospheric shapes and boundary conditions cause model outputs to converge.

It becomes interesting to see how the system reacts to slight modifications in the
boundary conditions. For example, over longer timescales, the magnitude of solar
forcing (SF) and volcanic forcing (VF) is almost the same or less, and anthropogenic
forcings are generally smaller than 2 W/m2. Given that these values represent about
1% of the average radiative flux from the sun, the atmospheric response appears
to be largely linear. This presumption supports the reduction of potentially intri-
cate forcings to general radiative forcings at annual scales in climate algorithms
(Meehl et al. 2004; Hansen et al. 2005, for GHGs). On longer timescales, however,
linearity diminishes. Intense nonlinear interactions and feedbacks among global
albedos and temperatures are evident in the “Daisyworld” algorithm (Watson and
Lovelock 1983) and later research on energy balance models. Over multimillennial
timescales, temperature-albedo feedbacks play a particularly significant role during
glacial-interglacial transitions. The methods used by different authors to ascertain
the critical ice-albedo feedback timescales vary. Somewriters take into account short
timescales such as 200 years, including Roques et al. (2014). Conversely, over the
previous millennium, Østvand et al. (2014) and Rypdal and Rypdal (2014) assume
a fairly linear temperature response to SF and VF forcings. Pelletier (1998) and
Fraedrich et al. (2009) prolong this linearity assumption to even greater timescales.
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Determining the timescales over which linear responses are valid is essential. It
should be noted, though, that if the forcing is volcanic or volcanic-like, exhibiting
spiky or intermittent behavior, the response may become nonlinear, even over scales
where normal responses to minor forcings obey linearity.

26.1.2 Scaling Regimes in the Atmosphere

Prior to discussing models, it is important to examine the empirical findings. Higher
frequencies exhibit a highly nonlinearity of the atmosphere, as seen in the weather
patterns. However, after approximately ten days, there is a significant shift to a lower-
frequency regime in the atmosphere, known as the “macroweather” regime, which
exhibits potentially quasi-linear responses. The identification of the fundamental
scaling regimes in the atmosphere was initially achieved through spectral analysis,
as demonstrated by Lovejoy and Schertzer (1986), Pelletier (1998), Shackleton and
Imbrie and Huybers and Curry (2006). Nevertheless, a clearer and simpler interpre-
tation was obtained by analyzing real space fluctuations. This approach revealed that
the conventional understandingof atmospheric variability, characterizedby a series of
limited-range processes like nonlinear oscillators, has largely overlooked the scaling
“background spectrum,” which is the main cause of variability. The analysis showed
that for nearly all atmospheric domains, there is a shift from the macroweather
regime-corresponding lower-frequency scaling regime with H < 0 for scales t > 10
days, to the scalingbehavior ofmean temperaturefluctuations, represented asΔT (t)≈
ΔtH withH>0.The theoretical prediction of this transition scale near ten days is based
on the turbulent wind scaling induced by SF, specifically through the required density
of energy rate (Lovejoy and Schertzer 2010, 2013; Lovejoy et al. 2014). The lower-
frequency H < 0 pattern is characterized by fluctuations that tend to cancel out, effec-
tively converging, while the higher-frequency H > 0 pattern is typically associated
with temperature observations fluctuating randomly, similar to a drunkard’s walk.
According to Lovejoy (2013) and Lovejoy et al. (2014), this converging regime is
an example of “macroweather,” a category of low-frequency weather. Macroweather
persists for very long timescales for the GCM control simulations; in practice, it lasts
for 10–30 years (industrial) and 50–100 years (pre-industrial) before a new regime
with H > 0 appears. Climate change is frequently associated with this new regime
(see Franzke et al. 2013 as well as Lovejoy et al. 2013, Fig. 5). Numerous studies
have investigated macroweather scaling, such as Bunde et al. (2005), Østvand et al.
(2014), Rypdal and Rypdal (2014), Eichner et al. (2003), Kantelhardt et al. (2006)
and Rybski et al. (2006).

The transition from “macroweather” to climate (at scale c) seems to be due to the
fact that over macroweather timescales—where fluctuations are “cancelling” each
other out—other slower processes, which likely include external climate forcings
and other slow (internal) land-ice or biogeochemical processes, gradually become
more dominant. Eventually, at scale c, their variability takes over. The specific value
of the global transition scale c during the pre-industrial Holocene and the possibility
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of large regional variations in c during the Holocene are major points of contention;
Lovejoy provides additional information. These factors imply that the data from
Greenland ice cores may not be universally representative.

26.1.3 The Numerical Modeling of Scaling

Several studies have investigated the responses of GCMs to low-frequency control
runs (Vyushin et al. 2004; Zhu et al. 2006; Fraedrich et al. 2009; Lovejoy et al. 2013;
Fredriksen and Rypdal 2016). These investigations have demonstrated that the lack
of a typical timescale for simulating long-time convergence causes the responses
to scale down to their lowest frequencies. The scaling exponents are empirically
found to be very small, leading to an “ultra-slow” convergence of general circulation
models (GCMs) (Lovejoy et al. 2013). The wider ramifications of this scaling have
not been generally accepted, despite past research concentrating on the statistical
connections inherent in the scaling statistics (Varotsos et al. 2009, 2015a, b).

This behavior hasmore recently been positionedwithin the conceptual structure of
GCM climate algorithm thanks to scaling fluctuation analysis (Lovejoy et al. 2013).
According to some theories, the climate processes of slow internal variability that
interact with external forcings e.g., SF and VF, as well as more recent human influ-
ences, are what cause climate to emerge. The low-frequency variability in GCMs,
spanning multiple centuries, is primarily driven by external forcings. Nonetheless,
incorporating slowprocesses such as land ice or biogeochemical processesmay intro-
duce additional sources of low-frequency internal variability. The main concern for
GCMs in the context of the past millennium is whether they canmodel accurately the
change from a climate phase with growing H > 0 to one with falling “macroweather”
fluctuations (H < 0). In a publication by Lovejoy et al. (2013), an analysis was
conducted on four GCMs that simulated the climate of the last millennium. The
study revealed that the variability in the low-frequency spectrum (particularly below
a 100-year timescale) that was deduced from these models, was relatively weak. This
weakness was attributed to the SF, which was found to be weak when employing
solar reconstructions that are sunspot-based with positive values of H. Additionally,
for strong VF, the kind of statistical forcing (with negative values of H) also played
a role in this variability. Previous studies by Lovejoy and Schertzer (2012a), Bothe
et al. (2013a, b), and Zanchettin et al. (2013) have also highlighted similar findings.
For further insights into the dynamics of centennial timescales, refer to Zanchettin
et al. (2010).

26.1.4 The Missing Understanding

Examining the responses to SF and VF at multi-centennial periods raises the topic of
linearity. When reducing climate forcings to their corresponding radiative forcings,
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it is common to assume that the combined response of SF and VF is approximately
the total of each of their distinct effects. However, Mann et al. (2005) have already
pointed out that this additivity assumption does not hold in the Zebiak Cane (ZC)
model. To better understand this issue and measure the degree of sub-additivity as it
changes with time, Lovejoy and Varotsos conducted an analysis.

Clement et al. (1996) also emphasized the high sensitivity tominimal forcings and
poor sensitivity to big forcings resulting from the nonlinearmodel response as another
linear/nonlinear issue. Systems that exhibit different statistical behaviors for strong
and weak events are often referred to as “intermittent” and display varying degrees
of clustering. Lovejoy and Varotsos quantitatively investigated this phenomenon and
confirmed that it is very noticeable for VF. Additionally, they found that the ZC
model, with a GCM, exhibits significantly less intermittency, indicating that the
model successfully attenuates the forcing in a strong and nonlinear manner. Lovejoy
and Varotsos established analysis methodologies to resolve these problems and used
them to analyze model results spanning the past millennium. Regrettably, despite our
examination of the NASAGISS E2-R simulations from the last millennium, there is
a lack of comprehensive last-millennium GCM simulations combining forcings and
responses that are either volcanic, solely solar, or both. As a result, Lovejoy and
Varotsos (2016) have resorted to utilizing the simplified ZC model results presented
by Mann et al. (2005), despite the fact that even this model lacks the control runs
required to measure internal variability directly.

The ZC model, while deficient in certain crucial mechanisms such as deep ocean
dynamics, does exhibit sources of low-frequency variability. For instance, Goswami
and Shukla (1991) identified multidecadal and multicentennial nonlinear variability
in their 360-year control runs, ascribed to the interplay of low-level convergence,
atmospheric heating, and anomalies in Sea Surface Temperature (SST). Furthermore,
Mann et al. (2005) highlighted the variability on a centennial scale in theirmillennium
ZC simulations as a key factor (Varotsos 2013).

26.2 Climate Simulation Models for Solar and Volcanic
Forcings

In the previous millennium’s pre-industrial era, the composition of the atmosphere
remained relatively stable, while the Earth’s orbital parameters experienced minor
variations. Climate models in GCM simulations primarily utilized SF and VF during
this time period. Although some models also incorporated reconstructed land use
changes, the impact of these forcings was relatively weak. Research by Minnis et al.
(1993) highlighted the significant cooling effect of volcanic aerosols followingMount
Pinatubo’s eruption in 1991.

Further research byShindell et al. (2003) highlighted the impact of solar irradiance
variability and volcanic aerosols on pre-industrial climate change. The best consis-
tencywith historical and proxy data was discoveredwhen SF andVFwere combined.
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However, these forcings elicit different responses due to the contrasting effects they
have on the stratosphere and surface. SF tends to reinforce each other, while VF
exhibits opposing effects. Furthermore, the temporal variabilities of volcanic and
solar activities, alongwith the seasonality, have been statistically associated with the
onset of El Niño-Southern Oscillation (ENSO) events. Decreased solar irradiance
results in cooling of the surface and stratosphere, whereas surface cooling is induced
by volcanic eruptions but warms the sunlit lower stratosphere thanks to aerosol
heating. This results in a lower stratosphere meridional gradient that is higher but a
tropopause area gradient that is lower (e.g., Varotsos et al. 1994).

According to Vyushin et al. (2004), VF improves the efficiency of atmosphere–
ocean models in terms of low-frequency variability scaling when compared to other
forcings.However, Blender andFraedrich (2004) provided a comment on this sugges-
tion, referencing earlier studies in the field. In 2005, Weber used simulations with a
climatemodel powered by reconstructed forcings to study how the temperature in the
Northern Hemisphere responded to SF and VF between 1000 and 1850. According
to the study’s findings, the response to VF never stabilizes because of how frequently
eruptions occur in comparison to the climate system’s dissipation period. In contrast,
the response to SF stabilizes at interdecadal timescales.

Mann et al. (2005) used the ZCmodel for the combined atmosphere–ocean system
in the tropical Pacific to examine how variations in natural radiative forcing affected
El Niño from 1000 and 1999. They found that the variability in past El Niño records
is accurately reproduced by the combined feedback of radiative SF and VF. In their
analysis of the timescale dependency of different solar and volcanic reconstructions,
Lovejoy and Schertzer (2012a) pointed out discrepancies in SF based on ice core 10Be
isotopes or sunspots, with isotope-based reconstructions declining and sunspot-based
reconstructions rising with timescale. The discrepancy between features based on
quality and quantity prompts questions about how accurate the solar reconstructions
are. The two volcanic reconstructions, on the other hand, showed comparable statis-
tical features, with considerable strength at the annual and occasionally multiannual
levels and rapidly reducing with rising periods (H < 0).

Mann et al. (2005) created a 100-realization ensemble for SF and VF, and
combined forcings during the previous thousand years using the Zebiak and Cane
(1987) ZC model of the tropical Pacific combined atmosphere–ocean system. The
following source provided by Lovejoy and Varotsos (2016) with the model’s forc-
ings and mean responses: ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate_forcing/
mann2005/mann2005.txt. It should be noted that no anthropogenic effects were
considered in their analysis.

A geometric factor of 1.57 was applied by Mann et al. (2005) to the Crowley VF
reconstruction to account for the narrow range of latitudes (between 30° N and 30°
S). The forcings and average responses derived from the ZC algorithm are shown
in Fig. 26.1a. Reconstructed solar (brown), SF amplified by five (orange), and VF
(black) make up the forcings. It is noteworthy that the SF series, which is based
on sunspots rather than 10Be, shows a higher resolution and a wandering pattern
throughout the last few centuries. The responses for the SF alone (top), the VF alone
(middle), and the combined forcings (bottom) are shown in the bottom graph. These

ftp://ftp.ncdc.noaa.gov/pub/data/paleo/climate_forcing/mann2005/mann2005.txt
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response series have been vertically offset by 2.5K, 1.5K, and 0.5K, respectively, to
improve clarity. Furthermore, the equivalent simulated responses from the GISS-E2-
Rmodel are shown in Fig. 26.1b, as documented byLovejoy et al. (2013) andSchmidt
et al. The industrial era that began after 1900 has been disregarded because of the
predominance of manmade forces. Based on sunspots from 1610, the SF utilized in
this analysis is the same as the one used in the ZC model.

The response to SF alone is shown in the top row of the graph, while the response
to both SF and the Crowley-reconstructed VF series (which is the same as utilized in
the ZC algorithm) is shown in the middle series. The SF and reconstructed VF series
from Gao et al. are used in the bottom series.

For clarity, we have offset each of these response series vertically by 1K. It is
important to note that the land area of the Northern Hemisphere, which is slightly
different in geography from the simulations made by ZC algorithm, was averaged
over in these simulations. The high frequencies show some fluctuation, but the low
frequencies seem similar despite this difference (Fig. 26.1).

26.3 Scaling Fluctuation Analysis—Haar Analysis

Lovejoy and Varotsos (2016) computed the fluctuations ΔF(t) (forcings, Wm−2)
and ΔT (Δt) (responses, K) in order to separate the variability based on timescale t.
Although it is customary to characterize desrepancies in termsof absolute differences,
as in ΔT (Δt) = T (t + Δt) − T (t), this method is insufficient for the purposes of
their investigation. Rather, they ought to take into account the absolute difference
in the averages between t and t + Δt/2 and t + Δt/2 and t + Δt. When defining
fluctuations, this approach is equivalent to employing Haar wavelets as opposed
to “poor man’s” wavelets (differences). The variations in a scaling domain show a
power law association with the time lag:

�T = ϕ�tH , (26.1)

where H is a dynamical variable that controls the process (e.g., a dynamical flux),
and whose average is independent of the timeframe (i.e., lag Δt). This suggests that,
on average, fluctuations tend to increase with scale when H > 0 and decline when H
< 0, showing that the average fluctuation behavior is 〈�T 〉 ≈ �tH . Harold Edwin
Hurst is honored by the symbol “H” (Hurst 1951).WhileH is equal to his eponymous
exponent in the context of quasi-Gaussian statistics, the H used here is valid in the
more general multifractal scenario and usually differs from.

Variances, which are known as fluctuations, are appropriate for fluctuations that
grow larger with size (H > 0). The rate at which mean variances rise with time lag
when H > 0 is a direct indicator of how important low frequencies are becoming in
relation to high frequencies. Still, variations tend to rise in physical systems even in
the casewhereH <0.This is due to the fact that as the time lagΔt rises, the correlations
between 〈T (t + �t)T (t)〉 tend to weaken, increasing the mean square variances
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Fig. 26.1 a For the
Zebiak–Cane model, the first
graph shows the radiative
forcings (RF) and responses
(T) from AD 1000 to 2000.
The whole simulation region
is covered by the integration
of these data. b This section
presents the GISS-ER-2
responses at a yearly
resolution, averaged over the
northern hemisphere’s land
that the absolute temperature
readings are not very
important because these
values are anomalies
(Lovejoy and Varotsos 2016)

(〈�T (�t)2〉). In terms ofmathematics, a stationary process has 〈�T (�t)2 = 〈(T (t+
�t) − T (t))2 = 2(〈T 2〉 − 〈T (t + �t)T (t)〉).

This suggests that variances are unable to adequately describe fluctuations when
H < 0. The variations in this instance are dominated by the high-frequency features,
which keep them from falling as scale t increases.

Since its value might closely approximate the difference fluctuation in regions
where H > 0 with adequate calibration, the Haar fluctuation—which is helpful for
− 1 < H < 1—is very simple to understand. Conversely, it can be made to mimic
another readily interpreted “anomaly fluctuation” in places where H < 0. The latter
is the mean series over a time interval Δt, with the general mean removed [Lovejoy
and Schertzer (2012b) refer to this as a “tendency” fluctuation, which may not make
as much sense].
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The way in which averaging a (mean zero) process (the anomaly) over longer
time scales lessens its variability is demonstrated by the decrease in Haar fluctua-
tions as lag Δt grows. In order to precisely align the raw Haar fluctuation with the
associated difference and anomaly fluctuations (for time scales with H > 0 and H <
0, respectively), the calibration includes increasing the raw fluctuation by a factor of
2. This suggests that the Haar fluctuations can be interpreted as anomalies in regions
where H < 0 and as differences with good precision in places where H > 0.

Other techniques, such as detrended fluctuation analysis, are also useful for esti-
mating exponents, but because their fluctuations are the standard deviations of the
residues from polynomial regressions on the running sum of the original series, they
are more difficult to interpret. Actually, there’s a common presentation of the DFA
fluctuation function with no units.

After the estimation is finished, the statistical characteristics of the fluctuations
can be examined to measure the fluctuations’ variations over time. For quantifying
these fluctuations, Sq(Δt), the qth order structure function, is especially helpful.

Sq(�t) = 〈
�T (�t)q

〉
(26.2)

In Eq. (26.2), Sq(Δt) is defined as the product of the fluctuations ΔT (t) raised to
the power of q, with ensemble averaging denoted by the symbol “ 〈 〉 ”. It is worth
noting that while q can theoretically take any value, in this context, it is restricted
to values greater than 0 to avoid potential divergences. Divergences are expected to
occur for any q less than 0 in the case of multifractals.

In a scaling regime, the behavior of Sq(Δt) follows a power law as shown in
Eq. (26.3).

Sq(�t) = 〈
�T (�t)q

〉 ∝ �tξ(q); ξ(q) = qH − K(q), (26.3)

The exponent ξ(q) is composed of two components: qH, which is linear, and K(q),
which is convex and generally nonlinear. K(1) is equal to 0. Strong non-Gaussian
and multifractal variability, or “intermittency,” is characterized by the function K(q).
With Gaussian processes, however, K(q) is always equal to 0.

The exponent of the root-mean-square (RMS) fluctuation, S2(Δt)1/2, or S(Δt), is
ξ(2)/2 = H - K(2)/2. It is noteworthy to mention that Lovejoy and Varotsos (2016)
found that ξ(2)/2≈H = ξ(1) when the intermittency is modest (K(q)≈ 0). Moreover,
the power law spectra’s exponent (β) and exponent H can be connected exactly as
follows: β= 1+ ξ(2)= 1+ 2H −K(2). TheWiener-Khintchin theorem’s corollary,
this relationship is especially helpful because the spectrum is a second-order statistic.
In the unique scenario where K(2) is small, the widely accepted relation β≈ 1 + 2H
is valid. Here, β > 1 is correlated with H > 0, and β < 0 is correlated with H < 0.

It is crucial to remember that a greater value of q indicates the scaling of strong
events, whilst a lower value of q indicates the scaling of weak events in order to
comprehend the consequences of the nonlinear function K(q). It is important to
note that q is not restricted to whole numbers. When the clustering of strong and
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weak events differs, the scaling features also change. The codimension, an additional
exponent that determines this grouping precisely, is uniquely determined by K(q).

The estimates of the Haar fluctuations for the SF and VF are shown in Fig. 26.2a.
Two distinct 10Be reconstructions are represented by the two curves on the right
(Shapiro et al. 2011; Steinhilber et al. 2009). Their exponents are roughly the same
and the amplitudes decrease quickly with scale, despite the fact that at any given
scale, their disparate assumptions result in amplitudes that differ by almost a factor
of 10 (Fig. 26.2).

The solar reconstruction utilized is a hybrid that combines a lower resolution
10Be-based reconstruction (Fig. 26.2b, bottom) covering a longer time period with an
annual resolution sunspot-based reconstruction (Fig. 26.2b, top). The two curves on
the right in Fig. 26.2a correspond to two distinct reconstructions of 10Be. It is evident
that the statistical features are completely different, with the 10Be reconstruction
“canceling” (H < 0) and the sunspot variations “wandering” (H > 0). The sunspot
data were from Shapiro et al. (2011), and the sunspot data were for the “background”
(that is, without an 11-year cycle; see Wang et al. 2005, for details).

In both reconstructions, the amplitudes differ by over a factor of 10 at any given
timescale, yet the Haar fluctuations become smaller as the scale increases (H <
0.3). The qualitative difference between the “wandering” (H > 0, sunspot-based)
and canceling (H < 0, 10Be-based) solar reconstructions is seen in Fig. 26.2b (top).
The early, low-resolution portion of the 10Be data (1000–1610) was interpolated to
yearly resolution using a close-to-linear interpolation technique for the “spliced”
reconstruction utilized here. Consequently, we find that H > 1 is observed over the
scale range of 1–50 years, whereas theH < 0 part is hardly discernible over the range
of 100–600 years (about corresponding to the length of the reconstruction’s 10Be
part).

On the other hand, it has been proposed since Hasselmann’s (1976) work that vari-
ables may respond linearly to space–time-averaged forcings if they are sufficiently
space–time-averaged. The nonlinear deterministic dynamics of these low-frequency
phenomenological models serve as a source of random perturbations, leading to
a stochastic model which is usually taken to be linear. However such models are
only meaningful if the high-frequency and low-frequency processes are separated
on a physical scale. Since Panofsky and Van der Hoven’s work in 1955, there has
been evidence of a significant break at scales of two to ten days. Van der Hoven
first proposed this break as the “scale of migratory pressure systems of synoptic
weather map scale” in 1957, and Kolesnikov and Monin proposed it as the “synoptic
maximum” in 1965.

According to Penland and Sardeshmuhk,Newman et al. (2003), and Sardeshmukh
and Sura (2009), the system is viewed as a multivariate Ornstein–Uhlenbeck (OU)
process from the standpoint of linear stochastic modeling, sometimes known as
“linear inverse modeling” (LIM). An OU process behaves like white noise itself at
low frequencies, but at high frequencies, it can be thought of as the integral of white
noise. These regimes correlate to weather and macroweather, respectively, in the
setting of LIMs. Newman (2013) recently showed that, over 1–2-year timeframes,
global temperature hindcasts have a somewhat better predictive ability than GCMs.
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Fig. 26.2 a For lags
t ranging from 2 to 1000
years, the RMS Haar
fluctuation S(t) for the solar
and volcanic reconstructions
employed in the ZC
simulation (left). The
sunspot-based reconstruction
(b, top) and the 10Be-based
reconstruction (b, bottom)
are “spliced” together to
create the hybrid solar. b A
comparison between a recent
10Be reconstruction (bottom,
total TSI mean plus
anomaly–since 7362BC; see
(a) for a fluctuation analysis,
H 0.3) similar to that
“spliced” onto the sunspot
reconstruction for the period
1000–1610 and the
sunspot-derived total solar
irradiance (TSI) anomaly
(top, used in the ZC and
GISS simulations back to
1610, H 0.4)

Within the more general scaling hypothesis of Lovejoy and Schertzer (1986), the
transition point denotes the length of time that planetary structures have existed.
Lovejoy and Schertzer (2010) provided more quantitative support for this idea by
analyzing the turbulent energy rate density. The low- and high-frequency regime
scaling behavior showed spectra thatwere clearly different fromOrnstein–Uhlenbeck
(OU) processes, especially in the region 0.2 < β1 < 0.8. Nowadays, people refer to
these twodifferent regimes as “weather” and “macroweather” (Lovejoy andSchertzer
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2013).At lower frequencies, themain departure from the traditional Local Interaction
Model (LIM) is noticeable.

The LIM value of β1 = 0 (white noise) is unpredictable at low frequencies, even
though the difference in the parameter l might seem negligible. On the other hand,
actual values that fall between 0.2 and 0.8 (mostly depending on the location) have
a significant potential for predictability (which can diverge as β1 approaches 1).
In 2015, Lovejoy et al. (2015) and Lovejoy introduced the “Scaling Macroweather
Model” (SLIMM),which is a set of fractional-order (yet linear) stochastic differential
equations that show the ability to predict global mean temperatures up to ten years
in advance. Although weather and macroweather regimes have unique statistical
properties, linear stochastic models like LIM or SLIMM can be used as reliable
approximations over large ranges.

Regardless of their type—SLIM or SLIMM—these linear stochastic models
clearly represent the weather/macroweather transition and provide predictive power
up to macroweather scales that could reach decades. A distinct class of phenomeno-
logical models, based on radiative energy balances, is frequently used, nevertheless,
for longer timescales.

Energy balance models are typically characterized by nonlinearity, including
tipping points and bifurcations, and are particularly focused on slower climate scale
phenomena, such as sea ice–albedo feedbacks. These models can be either determin-
istic or stochastic, and they are usually zero- or one-dimensional in space, either aver-
aged across thewholeEarth or over particular latitude bands.Numerous researchhave
contrasted these twomethods; Dijkstra (2013) offers an overview of the more current
stochastic “randomdynamical systems” technique and the conventional deterministic
dynamical systems method.

Despite the fact that energy balance models are often nonlinear, some academics
contend that linear models can nevertheless be applied to sizes as large as millennials
and multimillennials. Furthermore, there is empirical evidence of stochastic linearity
between forcings and responses in the macroweather domain, as demonstrated by
linear regressions’ capacity to lessen the effects of SF,VF, and human-caused forcing.
In the case of anthropogenic forcing, where globally averaged CO2 radiative forcings
act as a linear proxy for all anthropogenic forcings, this evidence has been statistically
proven. This radiative forcing has produced residues with amplitudes that are similar
to estimates of natural variability from GCMs when it is regressed on similarly
averaged temperatures.

Stochastic linearity in the system is confirmed by the finding that the global
temperature is the sumof residuals indicating natural variability and an anthropogenic
component calculated by regression. This is because, in the absence of human inter-
ference, the residues that have been detected are probably going to change. Actually,
it was discovered that only the residues’ statistical characteristics closely matched
those of the pre-industrial multiproxy statistics after performing fluctuation analysis
on them (Varotsos et al. 2020; Cracknell andVarotsos 2012;Kondratyev andVarotsos
2013; Varotsos and Ghosh 2017).
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26.4 Nonintermittent Events, Climate Responses
and Power-Law

Changes in boundary conditions lead to climate change, according toGCMs. Climate
forcings are the term for these boundary conditions, with human forcings being of
particular importance. The responses are reasonably linear because these forcings are
typically about 1% of the mean solar input. This allows the reduction of forcings to a
common denominator, called “equivalent radiative forcing,” on the assumption that
the various forcings are “additive” or add linearly.Additionally, linearity suggests that
climatic sensitivities are unaffected by howmuch the forcings fluctuate. Nonetheless,
there are limitations to both the independence of climatic sensitivities and the linearity
assumption. Energy balance models, for example, reject linearity at millennial and
longer scales and favor nonlinear albedo responses to orbital fluctuations. Similarly,
in the setting of large and abrupt volcanic forcings, the linearity of climate sensitivity
has been questioned at monthly and annual scales.

Since the linearity assumption is used so frequently, it is imperative to quantita-
tively determine its bounds. Utilizing numerical climate models is the most effective
way to accomplish this. Since land use changes had little effect on land use during the
pre-industrial era and were predominantly driven by SF and VF in the simulations
from the previous millennium, they offer an especially useful background. A suite
of fully connected GCMs should ideally include control runs for internal variability
in addition to solar-only, volcanic-only, and combined SF and VF.

Thiswould enable the evaluation of each response alone aswell as in combination.
Regretfully, the volcanic-alone responses are absent from the set of GCM outputs
that are currently accessible, which only consists of the GISS E2-R millennium
simulations with solar-only and SF plus VF. The ZC model, a condensed climate
model created by Mann et al. (2005), produced a complete set of external forcing
responses, which Lovejoy and Varotsos (2016) also considered.

Lovejoy and Varotsos (2016) first evaluated the forcings’ timescale-based vari-
ability by examiningfluctuations, in linewith an earlier study. The difference between
the averages of the first and second halves of time intervals was used to calculate
these fluctuations, or “Haar” fluctuations. The two separate regimes—one where
average fluctuations rise with timescale (H > 0) and another where they drop with
scale (H < 0)—were only possible thanks to this precise characterization. The SF
generally increased with increasing timelines, but it had little effect at annual scales.
Conversely, the volcanic forcing exhibited notable strength at yearly scales but
quickly decreased, eventually reaching a position after about 200 years where both
forcings were roughly equal. Lovejoy and Varotsos (2016) assessed and measured
their non-additivity (nonlinearity) by looking at the response to combined forcing.
The ZC model’s additivity of radiative forcings was effective up to about 50-year
scales, according to direct analysis (Fig. 26.2a, b). At 400-year scales, however,
negative feedback interactions between SF and VF resulted in a 1.5–2 reduction in
the combined effect. At these scales, this “subadditivity” led to comparatively small
combined effects.
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Although this result is statistically stable for the ZCmillennium simulations, more
research is needed to determine the cause of the nonlinearity and reproduce the find-
ings using fully-coupled GCMs. If it were possible to measure internal variability
using the output from ZC control runs, the conclusions would also be strength-
ened. Several more simulations with various forcings are needed to settle this issue
definitively.

Lovejoy and Varotsos (2016) used the idea of linear and scaling systems to inves-
tigate the possibility of nonlinear reactions to extreme events like volcanic eruptions.
In these kinds of systems, themoment order is a linear function of the difference in the
structure function exponents for the forcings and responses. Higher order moments
are more susceptible to unusually high values, whereas lower order moments are
mostly dominated by frequently occurring low values. Lovejoy and Varotsos (2016)
separated the nonlinear component ξ(q) of the structural function exponents—repre-
sented by the function K(q)—through trace moment analysis. In relation to the
“spikiness” of the signal, this component measures the variability’s intermittent and
multifractal nature.

Notably, the results showed that the intermittency of volcanoes was far stronger
than that of solar systems.However, themodel responseswere almost nonintermittent
and very smoothed in both scenarios, almost like a Gaussian distribution. As a result,
Lovejoy and Varotsos (2016) came to the conclusion that the model’s reactions to
strong events weren’t as sensitive as those to more frequent, less powerful forcing
events.

Lovejoy and Varotsos (2016) looked at our climate system model’s outputs and
found evidence that, for at least 50 years, the climate system’s response to forcing
events is still roughly linear, especially for weak and nonintermittent events. On the
other hand, abrupt and sporadic occurrences such as volcanic eruptions, which can
break linearity at shorter durations, progressively lose their significance as timescales
increase (with a scaling exponent H ≈ − 0.3). Practically speaking, a wide variety
of macroweather timescales (≈10 days to over 50 years) may be covered by linear
stochastic models. However, given their possible importance, it might be worthwhile
to create tailored coupled climate model experiments to look into this issue more
thoroughly.
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Afterword

The work must be completed. “You can’t embrace the boundless,” said Kozma
Prutkov 150 years ago, repeatedly emphasizing this important statement, to the point
that “Spit in the eyes of anyone who says, ‘You can embrace the boundless.’”.

Convection, which has many new and undeveloped aspects, is highlighted in a
separate large Chap. 13. For example, the “forest” of convective columns in the
atmosphere and the deep ocean await understanding. Such “forests we have seen in
the laboratory experiments but their positions at the phase diagrams Ra-Ta had to be
appeared. I heard about the former from the late Nikita Fedorovich, a corresponding
member Glazovskiy, but no real fieldwork was performed to the fall of the Soviet
Union.

1. The proportionality of the average square of velocity to time can be interpreted
as the average energy per unit mass. Cumulative distributions—N (≥ E) are used
to describe random events such as earthquakes, which represent the number of
events in a given period with energy greater than or equal to a specified value.
This characteristic has the dimension of frequency and therefore N (≥ E) = c1ε/
E, where ε is the rate of energy generation that causes the studied process, c1 is
a dimensionless number appearing in comparison with experimental data. The
other parameters defining the process in the study may form a dimensionless
similarity criterium Π on which the dimensionless number c1 may depend (see
Chap. 3). This is known as the Gutenberg-Richter law, the distribution of aster-
oids, Chap. 11.4, the number of rocks depending on their mass on the surface of
Mars, and the distributions for the surface relief of celestial bodies, etc.

2. The proportionality of the average square of the distance between events to
the cube of time, i.e. 〈x2(t)〉 = c1εt3. This quantity is related to area. This is
the cumulative distribution for the areas of lithospheric plates and disk-shaped
galaxies by mass. In the latter case, gravity plays a role, while in the former case,
it is the geothermal flux and the limited spherical surface of the Earth.

3. Events and processes unfold not only in time but also in space, which is reflected
in the existence of a mixed moment for the complete equation ANK34 (with a
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substantial probability distribution function dp/dt, not partial ∂p/∂t), specifically
〈uixi〉 = εt2 (see the fundamental solution of the FPK equation, given in MY75,
§24, and the method of its solution proposed by A. A. Lushnikov in Chap. 1.3).
This leads to Richardson-Obukhov turbulent diffusion law and the structural
function for Kolmogorov-Obukhov 1941 small-scale turbulence.

4. A cubic dependence of the mean square of the coordinate on time has another
interpretation if the process occurs only (or predominantly) in one dimension. For
example, wind waves are predominantly vertical, at least in terms of measuring
displacements on the water surface in that direction, and if they are proportional
to t3, then their frequency spectrum will be ω−4. However, there is a numerical
coefficient in this dependence that may depend on the similarity parameters
present in the process. In the case of wind waves, this is their age, which slightly
alters the exponent, as described in Chap. 6.

5. Almost all celestial bodies rotate depending on the size of the phenomena, and
the frequency of rotation can lead to significant changes in processes. Typically,
they stabilize movements to some extent (like a bicycle!). The outcome in all
processes depends on the excitation and the duration of its action. Rotation limits
the excitation to some extent, but there can still be elements of randomness. An
example of this are hurricanes. Their area is proportional to t3, and their speeds
are proportional to t1/2. As a result, their strength is approximately t4 ~ ω−4. In
fluids, the effect is manifested through the Coriolis force 2ωsinθ—that’s why
hurricanes do not occur in the ± 5° latitude band, where there are no spiral
vortices on the surface of the ocean (Chap. 9). In laboratory experiments on the
influence of rotation on turbulence, this is manifested in the fact that the spatial
spectrum decreases faster with the increase of the wave number of Kolmogorov-
Obukhov turbulence (Chap. 5), i.e., k−2 instead of k−5/3 for the usual cumulative
distribution of discrete volumes by areas. This is the distribution of lithospheric
plates by areas and the same distribution of spiral galaxies by masses.

Cumulative distribution of discrete volumes by areas will beN(≥S) ~ (ε/S)1/3.
This is the distribution of lithospheric plates by areas and the same distribution
of spiral galaxies by masses assuming that masses are proportional to areas,
Chap. 12.

Power-law cumulative distributions have also been obtained in social sciences.
There, they result from the analysis of empirical data, but without attempts to
construct anymodels or reasons for their appearance. An attempt at such analysis
was made byMaslov (2006) for economics and for text analysis (Newman 2005;
Jeon and McCoy 2005). Let’s just give a simple example—Zipf’s law:

ln r + lnωn = const, (1)

where r is the rank of a word, i.e. its number in the frequency list in decreasing
order of frequency,ωn—the frequency, i.e. the number of times this word is used
in the text (Maslov and Maslova 2006). This means that the product of these two
quantities is approximately constant. Thus, formula (1) is a direct consequence
in logarithmic form of the cumulative relationship 〈ui2〉 = εt ≡ E . But this is
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true within certain limits of r andωn. In other cases, nonlinear averaging must be
used, which goes beyond the scope of this text. A brief description is necessary.

6. The work of ANK34 is interesting for the practice of scientific research because
it generalized the use of the Fokker–Planck equation for systems with many
variables different from what we are used to. Instead of the second derivative
concerning the coordinate of the probability distribution function, its second
derivative concerning velocities is written, making the diffusion coefficient the
rate of kinetic energy generation ε. Here, this is used for two-dimensional turbu-
lence, describing the process of vortex merging, which most simply and vividly
depicts the reverse cascade of energy transfer from small to large scales.

7. The probabilistic laws of A.N. Kolmogorov, developed by his school into prac-
tical methods of their application, serve as a reliable physical–mathematical basis
for the theory of similarity and dimensionality. Although the latter itself became
a full-fledged theory by the last quarter of the twentieth century, it still did not
fit into the minds of many in the middle of the last century.

Now, newconcepts of intermediate asymptotics, self-similarity of the second kind,
and a sequence of rules for analyzing reactions have formed in this theory.

It is appropriate to recall the first epigraph belonging to Gibbs in the book: “The
aim of science is to find a point of view from which the problem can be solved most
simply and naturally.” Here it should be added—given our current knowledge of
the world around us. It turns out that a similar thought was expressed two thousand
years ago by the famous ancient astronomer Ptolemy about the geocentric system
of the world, which was then the simplest and most natural for him. And this view
lasted for about one and a half thousand years! Our understanding of the world is
developing tens of times faster, and we can hope for even more progress. A short
and concise presentation of the content and ideas of the first part of this book with
the latest results on tornadoes can be found in Golitsyn (2024).

The last epigraph belongs to Kolmogorov, who expressed this thought about half a
century ago. Since then, our knowledge and understanding of the surrounding world
have deepened to a tremendous extent, which greatly strengthens and specifies this
statement. Therefore, it should be repeated and used to conclude the book: “Chance
is a necessary, if not the most important, element of the universe, but it has a certain
order that leads to specific, often stable structures. Stability is limited in time and
space, which are unique in specific situations.”

Chapters 15 through 26 present an analysis of the hidden properties in the
“noise” obtained after the removal of trends and conventional cycles in natural
spatio-temporal series. This noise provides information about the long-range corre-
lations in several environmental timeseries. These are investigated using Haar Anal-
ysis and Detrended Fluctuation Analysis and their modified versions. The long and
short memory effect in natural spatio-temporal fluctuations is investigated to show
that most of the future extreme events in nature are the responses of past distur-
bances occurred due to natural or anthropogenic activities. In this context, Greek
Poet G. Seferis (Nobel 1963) said: “Erasing a piece from the past is like erasing a
corresponding piece from the future”.
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Based on this “memory effect” and applying the well-established “Natural time
Analysis” (that is based on the new concept of “natural time”) new tools for fore-
casting and nowcasting of future disastrous phenomena are presented. Special atten-
tion is paid in the atmospheric greenhouse gases, global warming, land and sea
temperature, mean sea level, air-pollution, ozone hole dynamics, spectral solar radi-
ation, El Nino/La Nina phenomenon, albedo and reflectance, cosmic rays, tropo-
spheric and stratospheric wind field (e.g., Varotsos 2025, Varotsos et al., 2024a,
b).

The aforementioned discussion in the Chaps. 15–26 is made in terms of the theo-
ries of the complex, multiphase and complicated systems, fractals, chaos, critical
phenomena, self-organised criticality, crossover, tipping and bifurcation points, etc.
(Bak 1997; Schroeder 2001; Sornette 2003).

Prof. GS Golitsyn

Prof. CA Varotsos
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